
1

Directorate of Distance Education
UNIVERSITY OF JAMMU

JAMMU

Course Coordinator :
Prof. Prakash C. Anthal

Department of Economics
University of Jammu, Jammu

http:/www.distanceeducationju.in
Printed & Published on behalf of the Directorate of Distance Education,
University of Jammu by the Director, DDE, University of Jammu, Jammu.

SELF LEARNING MATERIAL

M. A. ECONOMICS

2020 Onwards

COURSE CODE : ECO-103 UNIT : I - IV
SEMESTER : I LESSON NO. : 1-16

Title : MATHEMATICAL METHODS IN ECONOMICS

Teacher Incharge
Dr. Neelam Choudhary



2

c Directorate of Distance Education, University of Jammu, Jammu, 2020

• All rights reserved. No part of this work may be reproduced in any form, by
mimeograph or any other means, without permission in writing  from the DDE,
University of Jammu.

• The script writer shall be responsible for the lesson/script submitted to the DDE and
any plagiarism shall be his/her entire responsibility.

S. K. Printing Press /July 2020 /500

MATHEMATICAL METHODS IN ECONOMICS

COURSE CONTRIBUTORS :

* DR. AROON SHARMA

* PROF. DIPANKER SENGUPTA

REVIEW & EDITING :

* SATAKSHI GUPTA



3

DETAILED SYLLABUS

C.No. ECO-103 Title : Mathematical Methods in Economics

Credits : 6 Maximum Marks : 100

(a) Semester Examination : 80

Duration of Examination : 3.00 hrs. (b) Sessional Assessment : 20

MATHEMATICAL  METHODS  IN  ECONOMICS

Syllabus for the Examination to be held in December 2019 to
December 2021

Preamble- The aim of this course is to train students in the use of mathematical
tools to understand concepts in economics presented in the form of mathematical
models and express economic ideas in the same form. The course is intended
to enable the students to utilize these tools in subsequent courses in the II, III
and IV semesters especially those courses where the use of mathematics has
become a norm.

UNIT-I EQUATIONS AND DIFFERENTIATION

Numbers-natural, Integers, rational, irrational, complex, linear equations.
Mathematical operations with Matrices, solution of simultaneous equations: Rank
of the matrix, matrix inversion. Quadratic Equations, Eigen roots and Eigen
Vectors. Concepts of limit and continuity, Economic examples and applications.
Principles of differentiation, rules of differentiation, differentiation of implicit
function, parametric function.

UNIT-II CALCULUS

Partial and total differentiation, Expansion by Taylor Series. Allied economic
applications. Maxima and Minima- constrained and unconstrained, economic
application. Principles of integration: Indefinite and definite. Application in
economics theory Economic application- Derivation of Consumers Surplus,

(i)
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Producers Surplus, Profit and utility maximization with one good, product and
input, Derivation of demand curves for inputs, goods etc., Comparative statics
and allied economic applications: combining calculus-Derivation of Slutsky
Equation, IS-IM model, Cobb Douglas and CES production functions, elasticity
of demand, supply substitution.

UNIT-III DIFFERENCE AND DIFFERENTIALS

Differential Equations: definitions and concepts; Solution of first order and second
order differential equations, Difference equations: definitions and concepts;
Solution of first order and second order difference equations, Simultaneous
Differential equations ad phase diagrams, Application of difference and differential
equations in Economics­Cobweb model, foreign trade multiplier model, Market
model with stocks- National Income Model.

UNIT-IV LINEAR PROGRAM MING, OPERATIONS AND
APPLICATIONS

Linear programming- Basic concepts; functions of a LP problem; Nature of
feasible, basic and optimal solutions; Solution of a LP problem through graphical
and simplex methods (Slack, Surplus and artificial variables); Formulation of
Dual and its interpretation; Input-Output Analysis: Introduction, Input-Output
transaction table, the technological Co- efficient matrix, solution of open model,
The Hawkins-Simon Conditions, solution for 2 and 3 industries, determination
of equilibrium prices.

NOTE FOR PAPER SETTER :

There shall be two types of questions in each Unit - four short answer type (each
of 250 words) and two medium answer type (each of 500 words). The candidate
will have to attempt two short answer type questions and one medium answer
type question from each Unit. Each short answer type question shall carry 4
marks and each medium answer type question carry 12 marks.

(ii)
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NUMBERS - NATURAL, INTEGERS, RATIONAL,
IRRATIONAL COMPLEX, LINEAR EQUATIONS

STRUCTURE

1.1 Introduction

1.2 Objectives

1.3 Number System

1.3.1 Natural Numbers and Whole Numbers

1.3.2 Integers

1.3.3 Rational Numbers

1.3.4 Irrational Numbers

1.3.5 Real Numbers

1.3.6 Imaginary Numbers

1.3.7 Complex Numbers

1.4 Linear Equations

1.4.1 Definition of Equation

1.4.2 The Root of an Equation

1.4.3 The degree of an Equation

1.4.4 Simultaneous Linear Equations in Two-Variable

M.A. Economics Lesson No. 1
C. No. 103 Semester - 1st Unit -I
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1.4.5 Simultaneous Linear Equations in Three-Variable

1.5 Economic Problems Involving Linear Equations

1.5.1 Demand Condition

1.5.2 Equilibrium Condition

1.5.3 Consumption Function

1.5.4 Multiplier Models

1.5.5 IS-LM Model/Analysis

1.6 Summary

1.7 Lesson end Exercise

1.8 Suggested Readings

1.1 INTRODUCTION

The concept of numbers and the structure of numbers that make up the number
system are basic to the use of calculus - the most important branch of Mathematics
useful for practical purpose especially for the students of economics. The part of
number system that is most applicable and useful in economics is the system of real
numbers; we will examine their types and operations.

1.2 OBJECTIVES

After reading this unit you should be able to :-

* The number system

* Solve the linear equations

* How they are used in economics

1.3 THE NUMBER SYSTEM

1.3.1 Natural numbers and whole numbers

Numbers of the form 1, 2, 3, 4 which are frequently used in counting are called
natural numbers [or whole numbers if 0 is also included in it] and the set of all
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natural numbers is denoted by the symbol N or Z. Natural numbers are also called
cardinal numbers or positive integers.

N (or z) = {1, 2, 3 --} = {x : x is a natural number}

= {x: x  z}

1.3.2 Integers

Integers are the numbers consisting of all natural numbers, zero and negatives of
natural numbers. The set of integers is denoted by I. Thus,

I = {….-3, -2, -1, 0, 1, 2, 3, …}

I = {x : x  1}

1, 2, 3 .. are called positive integers (+ve) and -3, -2, -1 are called negative integers
(-ve). The set of all positive integers is denoted by I+, the set of all negative integers
by I - and the set of all integers excluding 0 {i.e. the set of all non-zero integers} is
denoted by I. Thus

I+ = {1, 2, 3, ..} = {x : x is a +ve integer}

= {x, x  I+}

I- = {..-3, -2, -1, …} = {x : x is -ve integer}

= {x, x  I-}

I0 = {….-3, -2, -1, 1, 2, 3, ..}

= {x : x  is an integer excluding 0}

= {x, x  I0}

1.3.3 Rational numbers

All numbers of the form a/b, where a and b are integers and b  0 are called
rational numbers. These can be expressed either as finite decimals or recurring
(infinite) decimals. For example 1/5 = 0.2, 1/2 = 0.5 and 1/3 = .333 …. The set of
all rational numbers is denoted by Q. Thus,

Q = {a/b: a and b are integers and b  0}
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Q+ = {All positive rational numbers}

= {x: x is a +ve rational number}

Q -1 = {All negative rational numbers}

= {x: x is a -ve rational number}

Q 0 = {All rational numbers excluding 0}

= {All non-zero rational numbers}

= {x : x is a rational number + x  0}

1.3.4 Irrational numbers

Numbers which are not rational numbers or which cannot be expressed as the ratio
of two integers are called irrational numbers. For example,  =   

7
22   = 3.14159,

 2 ,  3  - are irrational numbers.

1.3.5 Real numbers

The totality of all rational plus irrational numbers is called the set of all real numbers
and is denoted by R. Thus,

R = {All rational numbers +  All irrational number}

= {x : x is a real number} = {x: x  R}

R+ = {All positive real numbers}

= {x : x is a +ve real number}

= {x : x  R+}

R-1 = {All negative real numbers}

= {x : x is a -ve real number}

= {x : x  R-}

R0 = {All non-zero real numbers}

= {x : x is a real number and x  0}

= {x : x  R0}
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1.3.6 Imaginary numbers

Numbers of the form  a , where is a positive integer are called imaginary numbers.
Thus, square roots of negative numbers are called imaginary numbers. For example
 2 ,   3  ... are called imaginary numbers.

1.3.7 Complex numbers

Numbers of the form a + ib where a and b are real numbers and i =  1  are called
complex numbers. The set of all complex numbers may be denoted by C. Thus,

C = {a/b : a and b are real numbers}

= {All real numbers + All imaginary numbers + All combinations of these

two}

For example, 5 + 2i, 5 - 2i, 7 +  5   … are all complex numbers

1.4 LINEAR EQUATIONS

In many cases, the relationship between economic variables may be linear. A demand
schedule for a good may reveal the linear relationship between the amount demanded
of the good and its price. Similarly, aggregate consumption in a country may be
linearly related to its aggregate disposable income. Moreover, in econometric models,
linear regression equations are widely employed.

1.4.1 Definition of Equation

A polynomial of nth degree in x equated to zero is termed as an equation of nth
degree in x. The unknown quantity in the equation is called variable. Thus, ax + b
=0 (a  0) is an equation of first degree in x. Equations of first degree in x are also
called the linear equations. Similarly, ax3 + bx2 + cx + d = 0 (a  0) is an equation
of 3rd degree in x or a cubic equation.

1.4.2 The Root of an equation

A value of the variable, which renders both sides of the equation identical is called
a root of the equation. For example 3 is the root if x + 3 = 6; 3 & 5 are the roots of
x2 - 8x + 15 = 0.
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1.4.3 The Degree of an equation

The degree of an equation is the index of the highest power unknown quantity or
the variable involved of the equation when the equation has been cleared of all the
radicals and the denominator involving the variable.

For example

 
4

x
1x 

Multiplying by x4 , we have

     x4x
x

1xx 

x41x   

Squaring both sides

(x+1)2 = 16   2x

x2 + 2x + 1 = 16x

x2 - 14x + 1 = 0

Clearly, the highest power of x is 2

   The equation is of degree 2 (quadratic)

Example :        
 

4
15

1x3
8x7 




Solution : By cross multiplying, we get

4(7x+8) = 15(3x+1)

28x+32 = 45x+15
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28x - 45x = 15-32

-17x = -17    x =1

Example :  
 

3x
4

4x
3

1x
1









Solution : We split the term on the right hand side i.e.

 
 

3x
3

3x
1

3x
4









The given equation can be written as

 
 

3x
3

3x
1

4x
3

1x
1












or
 

4x
3

3x
3

3x
3

1x
1












or
 

)4x)(3x(
9x312x3

)3x)(1x(
1x3x








or
 

)4x)(3x(
3

)3x)(1x(
2






or
 

4x
3

1x
2






or 2x + 8 = 3x + 3

2x - 3x = 3-8

-x = -5

x = 5

Self-Assessment - I

1. What do you understand by the term Integers ?
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________________________________________________________

________________________________________________________

________________________________________________________

________________________________________________________

2. Why the set of Integers is known as a Universal Set ?

________________________________________________________

________________________________________________________

________________________________________________________

________________________________________________________

3. What are imaginery numbers and complex numbers ?

________________________________________________________

________________________________________________________

________________________________________________________

________________________________________________________

1.4.4 Simultaneous linear equations in two variables

consider the equations a1x + b1y+c1 = 0

a2x + b2y+c2 = 0

There is a particular pair of values of x and y which solves both equations, then the
equations are called simultaneous equations. The pair of values is called the solution
of two equations. There are various methods of solving the simultaneous equations.


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Method 1: Equalization of co-efficients method

In this method, we multiply the two equations by suitable number that the co-efficients
of either of the two variables become equal in the equations. Then, by adding the
two equations or by subtracting, we get on equation in one variable.

Method 2 : Method of comparison

In this method we find the value of one variable in terms of the other from both the
equations and equate them. Thus, we get an solution in one variable only.

Method 3 : Method of substitution

We find the value of one variable in terms of other from one equation and substitute
that value in the other, we get an equation in one variable.

Example : Solve the equations

2x + y = 7

x + 3y = 6

Solution 1 : The given equations are

Method 1 2x + y = 7 -  (i)

x + 3y = 6 - (ii)

Multiply equation (ii) by 2, we get

2x+6y = 12 - (iii)

Subtracting (iii) from (i), we get

5 y = 5

y = 1

Substituting this value of y in equation (i)

2x + 1 = 7

2x  = 6

 Required solution is x = 3, y = 1
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Method 2 : The given equations are

2x + y = 7 - (i)

x + 3y = 6 - (ii)

from (i), 2x = 7-y

      x = 7-y

    2

from (ii), x = 6-3y

   
 

y36
2

y7




or 7-y = 2 (6-3y)

or 7-y = 12-6y

5y = 12-7

y  =   
 

5
5

   = 1

      from e.g. (i), we have

2x + y = 7

2x + 1 = 7

      2x = 7-1

        x = 3

Required solution is x = 3, y = 1

Method 3: The given equations are

2x + y = 7 - (i)

x + 3y = 6 - (ii)

From (ii), we have x = 6 - 3y
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Substituting in (i), we get

2 (6 - 3y) + y = 7

12 - 6y + y = 7

-5y = 7-12

-5y = -5

y = 1

If y = 1, x = 6-3y = 6-3 = 3

Required Solution is x = 3, y = 1

Rules of cross multiplication

Consider the equations

a1x + b1y + c1 = 0

a2x + b2y + c2 = 0

Note : Right hand side of these equations must be zero, when we apply this rule

 

212121121221 abba
1

caca
y

cbcb
x









  x = 
2121

2121

abba
bccb


  

y = 
2121

2112

abba
caca


  

Example : Solve the equations

4x - 5y = -8

2x - 3y = -6
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Solution

4x - 5y + 8 = 0

2x - 3y + 6 = 0

 
 

1012
1

2416
y

2430
x









 
3

2
6x 




 
4

2
8y 






 x = 3, y = 4 

1.4.5 Simultaneous linear equations in three variables.

The method of solving linear equations in three variables is similar to that used for
solving two simultaneous equation. First, we eliminate one of the three variables
from the given equations and arrive at linear equations in two variables. By solving
these two equations we get the values of the variables. Then, by substituting the
values of these two variables in any of the three equations and get the value of the
third remaining variables.

Example : Solve the equations

x + y + z = 10

2x + 3y + 4z = 33

3x -  y + z = 8

Solutions : The given equations are

x + y + z = 10 - (i)

2x + 3y + 4z = 33 - (ii)
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3x - y + z = 8 - (iii)

Multiply (i) by 4, we get

Subtracting (ii) from (iv), we get

2x + y = 7 - (v)

Again, multiply (iii) by 4, we get

12x - 4y + 4z = 32 - (vi)

Subtracting (vi) from (ii), we get

-10x + 7y = 1 - (vii)

Multiplying (v) by 5

10x + 5y = 35 - (viii)

Adding (vii) & (viii)

12y = 36

y = 3

From (viii), 10x = 5   3 = 35

10x = 35 - 15

x =  
 

2
10
20 

From (i), 2+3+z = 10

Z = 10-5 = 5

  x = 2, y = 3, z = 5 is the required solutions

Self-Assessment-II

Solve the following :
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a) 1
x

x  - 
1
2

x
x



 = 
2
3

x
x



 - 
3
4

x
x



b) 3x + 2y = 9; x + 3y = 10

1.5 ECONOMIC PROBLEMS INVOLVING LINEAR EQUATIONS

1.5.1 Demand Condition

It involves the problems related to the demand conditions in an economy.

Example : Henry Schultz estimates the demand curve for sugar in the U.S.
during the period 1915-1929 to be D = 135 - 8p where D stands for quantity
demanded and p stands for price

a) Find the price if the quantity demanded is 93

b) How much sugar would be demanded if it were a free good.

c) Find the amount demanded if price is 7

d) What is the highest price any one will pay.

Solution : The estimated demand function is D = 135 - 8p - (i)

a) Here, we are given is D =  93 substituting this value of D in (i), we have

93 = 135 - 8p

8p = 135-93 = 42

p = 
 

8
42

  = 5.25

b) If sugar were a free good, p = 0

D = 135 - 8p

D = 135

c) If p = 7

D = 135 - 8 (7)
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= 135 - 56 = 79

d) Putting D = 0, in the equation D = 135-8p

D = 135 - 8p

8p = 135

p =  
 

8
135

  = 16.875

Thus, if the price is 16.875 the amount demanded is zero. Therefore, it is clear that
the price must be something less than 16.875 if any amount of sugar is to be sold.

1.5.2 Equilibrium Condition

It involves the problems related to the market forces and their intervention
in the economy. It dealt with the equilibrium in the real world with inclusion and
exclusion of taxes.

Example: If the demand and supply equations are given by p = 12-3q and p

= 
 

2q
2
3  . Find the equilibrium price and quantity before and after tax t =  

 

2
1

per unit imposed.

Solution: (i) The demand and supply equations are given by p = 12-3q

and p =  
 

2q
2
3

 - ii)

For equilibrium

D = S

 q3122q
2
3 

 212q3q
2
3 
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 10q
2
9 

 

9
20q 

Put in (i)

p = 12 - 3  
 










9
20

= 12 - 
 

3
20

  = 16/3

    Before tax, equilibrium price = 16/3 and equilibrium quantity = 20/9

ii)   When tax t = 1/2 per unit is imposed then the new demand and supply equations
are

p1 = 12 - 3q1 - (iii)

p1 -  
 

2
1

    =  
 

2
3

 q1 + 2 - (iv)

12 - 3q1 - 
 

2
1

   = 
 

2
3

  q1 + 2

  
 

2
3

 q1 + 3q1 = 12 - 2 - 1/2

 

9
19

1q,2
19

1q2
9 

 







 9
193121p
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







3

1912

 
 

19/91q

17/31p




    equilibrium price and quantity

1.5.3 Consumption Function

This topic includes income, consumption, savings and their respective functions
with the addition of their propensities to save and consume.

Example : Given the consumption function C = Rs (40 + 621 Y) Crore

Where C is consumption and Y is income

i) Find the level of consumption when Y = Rs. 325 crore. Here find the average
propensity to consume when income is 325 cr.

ii) Find the level of Y if consumption is Rs. 250 crore.

iii) Assuming Y = C + S where S is saving find S when Y= Rs. 250 cr. Hence
find APC and APS and show that APC + APS = 1

Solution : i) C = 40 + .621 Y

When Y = Rs. 325

C = 40 + (.621) (325)

= 40 + 201.825

= 241.83 cr

Now APC when income is Rs. 325 cr.

=  
 

.744
325

241.83
Y
C 

ii) When C = Rs. 250 cr.
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250 = 40 + .621Y

.621y = 210

Y =  
 

338.16crRs..621
210 

Y = C + S

S = Y - C

= Rs. (250-195.25) cr.

= Rs. 55.25 cr

APC =  
 

0.78
250

195.25
Y
C 

APS =  
 

0.22
250

55.25
Y
S 

   APC + APS = .78 + 0.22

= 1

1.5.4 Multiplier Models

It includes multipliers Models of tax, expenditure and balanced budget by
considering the equilibrium level of income.

Example :

a) Derive the equilibrium level of income from the following model

C = Co + bYd, Yd = Y - Tx

Tx = Txo + tY  I = Io + aY, G = Go

b) What are the expenditure, tax and balanced budget multiplier for this model

Solution : We know that equilibrium level of income occurs where

Y = C + I + G
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= Co + bYd + Io + aY + Go

= Co + b (Y-Txo + tY) + Io + aY + Go

Y = Co + bY - bTxo - btY + Io + aY + Go

Y - bY - aY + btY = Co - bTxo + Io + Go

(1 - b - a + bt) Y = Co - bTxo + Io + Go

 

bta-b-1
oGoIxobToC

Y





b) Expenditure multiplier measures the change in income from an autonomous
change in spending

 

btab1
1

aK
ΔI
ΔY




The tax multiplier measures the change in income from equal autonomous
change in Txo.

 

btab1
b-

xt
K

xΔT
ΔY




Balanced budget multiplier measures changes in income from equal autonomous
change in government spending and taxes

Ka + Kt, = Kb

 Kb = 
btab1

b-1


 

Self-Assessment - III

1. The supply curve of a commodity is given to be S = ap - b.
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a) Find the ammount supplied if p = 
3b
a

b) What will be price if the amount supplied is 7a - 3b.

c) What is the lowest price at which the commodity will be sopplied.

IS - LM Analysis

Heavily dependent on introduction to mathematical economics - Edward T. Dowling

The IS schedule is a locus of points representing all the different combinations of
interest rates and income levels consistent with equilibrium in the goods (commodity)
market. The LM schedule is a locus of points representing all the different combinations
of interest rates and income levels consistent with equilibrium in the money market.
IS-LM analysis seeks to find the level of income and the rate of interest at which
both the commodity market and the money market will be equilibrium. This can be
accomplished with the techniques used for solving simultaneous equation. IS-LM
analysis deals explicitly with the interest rates and incorporates its effect into the
model.

IS and LM schedules

Taking a closed economic system with no external sector and no government activity
gives us an identity.

Y  C + I

Where  is the identically equals sign, Y is national income, C is consumption and
I is investment.

Y = C + I thus Y-C = I

but Y-C = S

where S is saving, so

S = I
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The Keynesian model assumes that S is a function of Y, and I is a function of the
rate of interest r, i.e.

S = sY

where s is the marginal propensity to save, MPS and

I = I* -   r

where I* is a constant and       is the parameter of the investment function, note that
  >0 so I decreases as r increases.

The IS schedule is a function along which I = S or

I* -   r = I* - (1)

Hence the IS schedule is a linear function in Y and r.  Along this schedule, the goods
market is in equilibrium. To determine equilibrium Y and r for this economic system,
another function in Y and r is required. This is obtained from the money market.

The money market is in equilibrium when the supply of money MS is equal
to demand for money MD. In Keynesian terms MD depends upon the transactions,
precautionary and speculative motives for holding cash.

MD = MD1 + MD2

Where MD1 = the transactions and precautionary demand for money and MD2 = the
speculative demand for money. Keynes assumes that MD1 is an increasing function
of Y and MD2 varies inversely with r. If MD1 =  Y and MD2 = k-gr where  , k and
I are positive constant and MS is constant at M*, then the equilibrium in the money
market will occur when

Ms = MD1 + MD2

M* =  Y + k - gr

  Y - gr = M* - k - (2)

This function gives all possible combinations of Y and r which bring equilibrium to
the money market and is called the LM schedule.

Equilibrium will occur in the money and goods market when equation 1 and 2 hold
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i.e. when

sY +   r = I*

and

  Y - gr = M* - k

We now have two equations in two unknown i.e. Y and r, whose solution, which
can be found in the usual way, will give the equilibrium Y and r for this simple
economic system.

Example : Give in the following information about a closed economy

Consumption C = 100+0.8Y

Investment I = 1200 - 30r

Where r is the rate of interest

Precautionary and transaction demand for money

M D1 = 0.25Y

Speculative demand for money

MD2 = 1375 - 25r

Money supply MS = 2500

Find the equilibrium values of Y and r

Solution : Y = C + I

C = 100 + 0.84

and

I = 1200 - 3r

Y = 100 + 0.84 + 1200 -3r

(1-0.8) Y = 1300 - 3r
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0.2Y = 1300- 3r

 r
2
3

.2
1300

.


= 6500 - 150r - (1)

The money market is in equilibrium when MS = MD but MD = MD1 + MD2

thus MS = MD1 + MD2 in equilibrium so

2500  = 0.25Y + 1375 - 25r

0.25Y  = 1125 + 25

Y = r
25
25

.25
1125

.
  

 = 4500 + 100r - (2)

Thus from (1) and (2), we get

6500 - 150r = 4500 + 100r

6500 - 4500 = 100r + 150r

2000 = 250r

r = 8

When r = 8, Y = 4500 + 100(8)

  = 4500 + 800

  = 5300

1.6 SUMMARY

In this lesson, we have

1) Explained the number system
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Numbers In symbols

Natural N = {x :  x  z}

Integers I = {x :  x   I}

Rational Q = {a/b : a & b are integers but b  0}

Irrational     = 22/7

Real R = { x : x  Ro}

Complex number a + ib

2) Discussed the Linear equations

3) Used the linear equations for solving the economic applications

1.7 LESSON END EXERCISE

Solve the following

i) 4x + 3y b= 7 ; 3x + 2y = 9

ii)

iii)

iv) x - y - z = 1, y- z - x = 1, z - x - y = 1

v) x + 2y + 3z = 1, 3x+2y+4z = 2, 3x+4y + 3z =3

vi) The demand curve for a commodity is given as D = 20-5p and supply curve is
S = 6p - 21. Find the equilibrium price and quantity

vii) If the demand and supply equations are given by p =12-3q and p =             .
Find the equilibrium price and quantity before and after tax t = 1/2 is imposed

1.8  SUGGESTED READINGS

Aggarwal,C.S & R.C.Joshi : Mathematics for Students of Economics (New Academic
Publishing Co).
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y
1

x
1;1

y
2

x
3 

 
7x

7
y5x4;

4
1y

3
4x






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Allen, R.G.D.: Mathematical Analysis for Economists (Macmillan).

Anthony Martin & Norman Biggs; Mathematics for Economics and Finance-Methods
and Modeling.

Black, J.& J.F. Bradley : Essential Mathematics for Economists (John Willey &
Sons).

Dowling, Edward T : Introduction to Mathematical Economics (Tata McGraw).

Henderson, James M & Richard E Quandt : Microeconomic Theory- A Mathematical
Approach (McGraw-Hill International Book Company.

Kandoi B : Mathematics for Business and Economics with Applications (Himalaya
Publishing House).

Yamane Taro: Mathematics for Economics - A Elementary Survey (Prentice Hall of
India Pvt. Ltd).

*****
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M.A. Economics Lesson No. 2
C.No. 103 Semester - 1st Unit I

MATHEMATICAL OPERATIONS WITH MATRICES,
SOLUTION SIMULTANEOUS EQUATION, RANK OF

THE MATRIX, MATRIX INVERSION

STRUCTURE

2.1 Introduction

2.2 Objectives

2.3 Matrices

2.3.1 Definition of Matrices

2.3.2 Types of Matrices

2.4 Basic Operations with Matrices

2.4.1 Scalar Multiplication of Matrices

2.4.2 Addition of Matrices

2.4.3 Subtraction of Matrices

2.4.4 Multiplication of Matrices

2.5 Crammer’s Rule

2.5.1 Crammer’s Rule

2.6 Inverse of Matrix

2.6.1 Adjoint of Matrix

2.6.2 Matrix Inversion
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2.1. INTRODUCTION

The British mathematician Arthur Cayley was the first person to formulate general
theory of matrices in 1857. He developed the properties of matrices as a pure
algebraic structure. Later on, the world realized the importance of its applications
in all important fields. Today, it is regarded as one of the most powerful and convenient
technique in economics especially in input-output analysis, game theory, linear
programming etc.

2.2 OBJECTIVES

After studying this lesson, you should be able to:-

* Type of Matrices

* Basic operations on Matrices

* Solve simultaneous equations

* Find the rank of matrices and matrix inversion

* Use  of matrices in economics

2.3 MATRICES

2.3.1 DEFINITION OF MATRICES

A matrix is a rectangular array of numbers, parameters or variables, each of which
has a carefully ordered place within the matrix. The numbers (parameters or variables)
are referred to as elements of the matrix. The numbers in the horizontal line are
called rows; the numbers in a vertical line are called the columns. The number of
rows (r) and column (c) defines the dimension of the matrix (r X c) which is read "r
by c". The rows number always precedes the column number.

2.7 Economic Application of Matrices

2.8 Summary

2.9 Lesson End Exercise

2.10 Suggested Readings
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A matrix of orders r X c can be shown as

 





















rc2r1r

c222
....
21

c11211

a....aa

a....aa
a....aa

A

Each of the numbers a11 or a2c or aij is known as the elements of A. aij is an element
at the intersection of the ith row and jth column. Elements a11, a12… a1c are the
elements of the first row and constitute row vector and similarly, a11, a21…. ar1 are
the elements of the first column and constitute a column vector. As such a matrix
can also be defined as an arrangement of row vector or column vector elements
such as a11, a22…. arc are the elements in the principal diagonal of matrix A

    13121114
21

, bbbBandAThus 











     21b       22b     23b
are matrices of order 2x2 and 2x3 respectively

2.3.1 Type of Matrices
i) Square and rectangular matrix. A matrix in which the number of rows is
equal to number of columns is called a square matrix. A matrix which is not a square
matrix is called a rectangular matrix.

e.g. if are
654
321

,
43
21


















Square and rectangular matrices of order 2x2 and 2x3 respectively.

ii) Diagonal Matrix: A square matrix is said to be a diagonal matrix if its non-
diagonal elements are zero

 




















































30
02

,
100

020
001

,

000
000
000
000

: 321 AA

a
a

a
a

AExample
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are all examples of diagonal matrices of order 4,3 and 2 respectively.

iii) Scalar matrix: A diagonal matrix in which all the diagonal elements are the
same is said to be scalar matrix.

 

 




















































10
01

,
100

01
001

,

000
000
000
000

: 321 ArA

a
a

a
a

AExample

are all examples of scalar matrices of order 4,3 & 2 respectively.

iv) Unit Matrix : A scalar (or square) matrix in which all the diagonal elements
are equal to one and is denoted by I

 















































10
01

,
100
010
001

,

1000
0100
0010
0001

: 321 IIIExample

are all elements of identity matrices of order 4,3 & 2 respectively.

v) Null matrix: A matrix in which all its elements are zero is called a null matrix
or a zero matrix and is denoted by 0 or 0mxn etc.

 

 0,00,
0
0

0

00
00

0,
000
000
000

0,

0000
0000
0000
0000

0:

54

321
























































Example

are all examples of null matrix.

vi) Column matrix: A matrix which contains only a single column is called column

matrix 
 

2
0

.ge 







 is a column matrix of order 2x1
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vii) Row Matrix: A matrix which contains only a single row is called a row matrix

e.g [3,5, 7] is a row matrix of order 1x3

viii) Transpose of a Matrix: A matrix obtained from the given matrix A, by
interchanging its rows and columns and is called the transpose of the given matrix A
and is denoted by A' or,  A. Since A has m rows and n column, A' will have n rows
and m columns.

 

 
















 ,:

333231

232221

131211

1

aaa
aaa
aaa

AExample    









6
3

5
2

4
1

, 2A

Then

 
















 ,

aaa
aaa
aaa

A

332313

322212

312111

1    

















6
5
4

3
2
1

A, 2

are examples of transposed matrices.

ix) Symmetric Matrix : A square matrix is said to be a symmetric matrix if it
remains unchanged by the interchange of its rows and columns, i.e. aij =aji.  In
other words, in a symmetrical matrix A=A.

 

33332313

322212

131211

1 ,:



















aaa
aaa
aaa

AExamples    
33

2

6
4
3

4
0
2

3
2
1

,
















 


A

 
















 



a

a
AA

0
0

,
0
2

2
2

43

are examples of symmetric matrix. In all these matrices A= A

x) Skew -symmetric matrix : A square matrix A is said to be a skew-symmetric
matrix if it changes only in sign, by inter-changing of its rows and columns i.e., (i, j)
the elements of A= -(j, i) the elements of A, or aij = -aji
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






 






















0
10

10
0

,
0

0
0

: 21 A
hg

fh
gh

AExamples

are examples of skew symmetrical matrices it may be noted that A1 & A2 will also
be skew symmetrical matrices.

xi) Equality of matrices: Two matrices are said to be equal if and only if they
are of the same order and the elements in the corresponding places of the two
matrices are equal.

e.g. A 




















10

23
B,

1
4

0
3 2

       are equal matrices

Self Assessment - I

1. What do you understand by Matrix. Differentiate between matrix and matrices.

________________________________________________________

________________________________________________________

________________________________________________________

________________________________________________________

2. Define Unit Matrix and Null Matrix with the help of an example.

________________________________________________________

________________________________________________________

________________________________________________________

________________________________________________________

2.4 BASIC OPERATIONS ON MATRICES

The basic operations in the matrix theory are
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2.4.1 Scalar multiplication of matrix

2.4.2 Addition of matrices

2.4.3 Subtraction of matrices

2.4.4 Multiplication of matrices

2.4.1 Scalar multiplication of a matrix

Given a matrix A (square or rectangular) and a scalar (or constant) k  0, KA is
defined as the Scalar multiple of the matrix A and is obtained by multiplying every
element of A by the Scalar K.

 

then
aaa
aaa
aaa

AifionIllustrati

















233221

232221

131211

)(:

 

 0 

333233

232221

131211

















 k

kakaka
kakaka
kakaka

KA

2.4.2 Addition (or sum) of matrices
Let A= (aij) and B = (bij) be any two matrices. Then the addition A+B of the two
matrices A+B is well defined if the two matrices A and B are of the same order, say
m x n. If this condition is satisfied then value of addition is to add the corresponding
elements of A&B

 

4242 1
1

2
7

3
7

4
6

2
4

8
3

7
2

6
1

)(
xx

BAifi 


















   1

 

















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1
1

2
7

3
7

4
6

3
2
4

8
3

7
2

6
1

232) BAii
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


















3
3

6
21

9
21

12
18

4
8

16
6

14
4

12
2

    
 






















34
38

616
216

914
214

1212
182

    
 

427
11

22
27

23
25

24
20

x










2.4.3 Subtraction (or difference) of matrices

Let A = (aij) and B = (bij) mxn be the two matrices of the same mxn order
i.e mxn, then the difference A-B of the two matrices A and B is defined as a matrix
D= [dij] mxn of the same order such that

D = A-B = [aij - bij] mxn

Example : if A  
3333

4
3

4

3
5
3

2
4
2

5
0
3

0
4
2

2
3
1

xx

B















































are the two given matrices of the same order i.e. 3x3 then find (i) A-B (ii) 2A-5 B

Solution (i)     

 

 
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
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
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





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






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
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
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3
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3
5
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2
4
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5
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4
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3
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3
1
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4
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22
43
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

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
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


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




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





ii)
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
















































20
15

20

15
25
15

10
20
10

10
10

6

0
8
4

21
6
2

 





























2010

15
206

15
258
154

104
206
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10
15
14

15
17
11

14
14

12
x















 




2.4.4 Multiplication of matrices:  Let A be an  m x n matrix, B be  n x r
matrix. The product  of A times B denoted by AB is the m x r matrix whose
entry in the ith row and jth column is the sum of product of corresponding
elements of ith row of A and jth column of B.

Caution : Observe that the product AB is only defined for matrices A and B
such that  the number of column of A is same as the number of rows of B.
For example if A is 2x3 and B is 3x4, the AB is defined and will be 2x4,
however if A is 2x3 and B is 2x4 then AB is not  defined.

Self Assessment - II

1. If A = 
2
0

2
-3 ,    B = 

3
1

-4
5 . Find AB

2. Find AB and BA, where

A =  

3
1
5

4
0
6

2
1
7

    and B =  

1
0
6

2
1
0

3
-2
4
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2.5 CRAMMER'S RULE

2.5.1 Crammer's rule for solution of equations linear consider the following set of
simultaneous

Equation
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a
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x
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a
a
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a
a

a
a
a



 

3

2

1

32

22

12

31

21

11

3

33

23

13

3

2

1

31

21

11

2 ,
b
b
b

a
a
a

a
a
a

a
a
a

b
b
b

a
a
a



 

 

33

23

13

32

22

12

3

2

1

3

3

3

33

23

13

2

2

32

22

12

1

1

1

31

21

11

33

23

13

32

22

12

3

2

1

1 ,
a
a
a

a
a
a

b
b
b

x
x
x

a
a
a

x
x
x

a
a
a

x
x
x

a
a
a

a
a
a

a
a
a

b
b
b

consider

x 









33

23

13

32

22

12

33

23

13

3

33

23

13

32

22

12

32

22

12

2

33

23

13

32

22

12

31

21

11

1 ,
a
a
a

a
a
a

a
a
a

x
a
a
a

a
a
a

a
a
a

x
a
a
a

a
a
a

a
a
a

x 

 001  x
 

01
1 




x

 







 3
32 ,2, xxSimilarly



43

This is known as Crammer's rule for solving simultaneous linear equations by using
determinants.

Note 1:  if  0 , then the solution to given system is unique.

Note 2 : If  0  and the numerator of all x1, x2 x3  i.e. ,1 , 32 ,   are all zero,

then the system has either no solution or infinite solution.

Note 3 : If    O and at least one of   321 ,   is non-zero, then it has no solution

Ex1: Use the method of determinants to solve the set of equations

2x1   -x2 = 3, -x1 +2x2 = - 3

Sol.

 

 whereA
1x2

B

1x2

X

2x2

A

 

























 



3

3
B,

x
x

x,
2
1

1
2

whereA
2

1

 
  )1()1()2()2(

2
1

1
2

ALet 






 




 0314 

 
)1()3()2()3(

2
1

3
3

1 






 




 336 

 
)3()1()3()2(

3
3

1
2

2 











 336 

By Crammer's Rule

 
1

3
3X 1

1 




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1

3
3X 2

2 








Self Assessment-III

1. 2x + y - z = 9, x + y + z = 9, 3x -y - z = -1

2. 10x + 5y - 5z = 45, 5x + 5y + 5z = 45 15x - 5y - 5z = -5

2.6 INVERSE OF MATRIX

In order to find an inverse of a matrix, one must know how to find adjoint of
a matrix. As inverse of a matrix is symbolically written as :

A-1 = 
.( )adj A
A

2.6.1 Adjoint of a matrix : Let A = (aij) be any square matrix of order n xn, then
the transpose  of matrix (Aij) where Aij is co-factor of aij in det. A, is called adjoint
of A and is written as adjoint A. Thus, if

 


















33

23

13

32

22

12

31

21

11

thenAdjA,
a
a
a

a
a
a

a
a
a

A  thenAdjA 

















33

23

13

32

22

12

31

21

11

A
A
A

A
A
A

A
A
A

.thenAdjA

Example:

 

findAdj,
4
2
3

3
3
2

3
2
1

Aif















  A.findAdj

Sol.
 

6612
4
2

3
3

A11 









 
396

3
3

3
2

A,2)68(
4
2

3
2

A 1312 

















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594

4
3

3
1

A,1)98(
4
3

3
2

A 2221 


















 
594

2
3

3
2

A,3)63(
3
2

3
1

A 3123 

















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3
2

2
1

A,4)62(
2
3

2
1

A 3332 


















 TT

33

23

13

32

22

12

31

21

11

1
3
3

4
5
2

5
1
6

A
A
A

A
A
A

A
A
A

A.jdA










































 

























1
4
5

3
5

1

3
2

6

2.6.2 Matrix Inversion

The determinant [A] of a 2 x 2 matrix called a second order determinant is derived
by taking the product of two elements on the principle diagonal and subtracting
from it the product of the two elements of the principle diagonal. Given a general 2
x 2 matrix.

 










22

12

21

11

a
a

a
a

A

the determinant is

[A] = a11 a22 - a12 a21

The determinant is a single number or scalar and is found only for square matrices.
If the determinant of a matrix is equal to zero. The determinant is said to vanish and
the matrix is termed as singular. A singular matrix is one in which there exists liner
dependence between at least two columns or rows. If [A] 0 the matrix A is non-
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singular and all its rows and columns are linearly independent.

The ranks of a matrix is defined as the maximum number of linearly dependent
rows or columns in the matrix. The rank of a matrix also allows for a simple test of
linear dependence which follows immediately. Assuming a square matrix of order n

If p (A) = n, A is nonsingular and there is no linear dependence.

If p (A) <n,  A is singular and there is linear dependence.

Examples:

i)
 











9
4

7
6

A ii)  
 











9
6

6
4

B

9

Since [A]   0, the matrix is non-singular i.e. there is no linear dependence between
any of its rows or columns. The rank of A is 2, written    (A) = 2

 

0
3636

)6(6)9(4B)ii






With [B] =0, B is singular and linear dependence exists between its rows and columns.
Inspection reveals that row 2 and column 2 are equal to 1.5 times row 1 and column
1 respectively. Hence    (B) = 1

Example: Given  

 


















3
7
2

4
4
3

5
6
8

A

the determinant [A] is calculated as follows
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1
4

5
6

2
3
7

5
6

)1(3
3
7

1
4

8A 

  )206(2)3518(3)712(8 

 )14(251)5(8 

 285140 

 63

With [A]  0, A is non-singular and    (A) = 3

Theorem : If A and B are non-singular square matrices of the same order then

(AB)-1  =  B-1  A-1

Sol :  A & B are non-singular

 0B,0A 

 0B.AAB 

 exists)AB(,B,A 111 

 AB  gularsinnonalsois 

Now (AB) (B-1. A-1) = A(B B-1)A-1

= A I A-1  = A A-1 = 1

Similarly, (B-1 A-1) (A B) = 1

Hence (A B)-1 = B-1 A-1

Example : If A =  

 

















1
1
5

1
3
2

1
2
1

  find AA-1 and verify A-1 A = 1
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Sol.  
 

1)12(
1
1

1
2

A,213
1
1

1
3

ANow 1211 


















 
 

3)52(
1
5

1
2

A,132
1
3

1
2

A 2113 


















 
1)21(

1
2

1
1

A,451
1
5

1
1

A 2322 


















 
9)101(

1
5

2
1

A,13152
1
5

3
2

A 3231 


















 
143

3
2

2
1

A33 









T

 

1
9
13

1
4

3

1
1

2









Also [A] = a11 A11 + a12 A12 + A=a13 A13

     = (1) (2) + 2 ( - 1) + 5 (-1)

     = 2 - 2 - 5

     = - 5

 






































1
9
13

1
4

3

1
1

2

5
1A.Adj

A
1A 1
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







































1
1
5

1
3
2

1
2
1

1
9
13

1
4

3

1
1

2
)5/1(AA 1

 








































1
0
0

0
1
0

0
0
1

)5(
5
1

5
0
0

0
5

0

0
0
5

5
1

 AA-1 A = 1

Self Assessment - IV

1. Find the inverse of a matrix A. If A =

1
2
5

2
3
1

1
1
1

2. Find the adjoint of the Matrix A. If

A = 
8
6

3
  4

2.7 ECONOMICS APPLICATION OF MATRICES

Example: Given y = C + I0, where C = C0 + b y use matrix inversion to find the
equilibrium level of y and c.

Solution: The given equation can first be rearranged so that the endogenous variables
c and y, together with their co-efficient, are on the left hand side of the equation
and exogenous variables C0 and I0 are on the right.

y   -   c  =  I0

         -b y  +   c  = c0
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Thus,    
 

























 
 0

0

c
I

c
y

1
1

b
1

The determinant of the co-efficient matrix is [A] = 1 (1) - (-b) (-1)

= 1 - b

The co-factor matrix is

 
 











1
b

1
1

C

 
 











1
1

b
1

A.Adj

 












1
1

b
1

b1
1Aand 1

 











































00

00

0

0

,

cbI
cI

b1
1

c
i

1
1

b
1

b1
1x

c
y

xletting

Thus, y =  
 

)0000 Ibc(
b1

1c),cI(
b1

1






)

Example: Use crammer's rule to solve for x and y when the cost function C = 8x2 -
xy+12y2 and the firm is bound by   contract to produce a minimum combination of
goods totaling 42 that is, subject to the constrain x + y= 42.

Set the constraint equal to zero, multiply it by   and form the lagrangian function

 C= 8x  -x y +12y  +    (42-x-y)2 2

 
0yx16

x
TC




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0y24x

y
TC





 
0yx42TC






Re-arrange the equations

16 x - y -   = 0

    X + 24y -  = 0

    X - y = -42

and set them in matrix form

 




























































42
0
0

y
x

0
1
1

1
24

1

1
1

16

expanding from third column

 0)116()1()241()1(A 

 421725 

 


























42
0
0

1
24

1

1
1

16
A3

   1050)241(42A1 

 
























0
1
1

42
0
0

1
1

16
A2

Expanding along the second column

,
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    714)116()42(A 2 

 


























42
0
0

1
24

1

1
1

16
A3

Expanding along the third column

 

= -16, 086

Thus, x  
0

_

y  
 

17
42

714
A
A2 




 
383

42
16086

A
A

and 3 




2.8 SUMMARY

We end this lesson by summarizing what we have covered in it.

i) Defined Matrix and types of matrices.

ii) Used crammer's rule to solve simultaneous equations.

iii) Rank of matrix and matrix inversion.

2.9 LESSON END EXERCISE

Q1. Define and give example of each of the following :-

i)   Trace of a matrix      ii)  Identify matrix
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Q2. If  A =

 

















1
4
6

0
2
1

0
3
2

, B =  

 

























1
5
2

2
1
1

3
0
3

Find a square matrix X of the order 3x3 such that A+B+X =0

Q3. Prove by an example that AB can be zero matrix when neither of A+B is
zero matrix.

Q4. Explain with illustration

i)  Transpose of a matrix ii)  Symmetric matrix

iii)  Skew Symmetric matrix

Q5. Solve by Crammer's rule

x+2y+3z=1; 2x+2y+4z=2; 3x+4y+3z=3

Q6. Consider the following national income determination model:-

Y = C+I+G

C = a+b (Y-t)

T = d+ t Y

Where Y (national income), C consumption expenditure, T (Tax collection) are
endogenous variable; I (investment) and G (government expenditure) are exogenous
variables; t is income tax rate. Solve for endogenous variables, using Crammer's
rule.

Q7. If

A =  

 

















4
2
3

3
3
2

3
2
1

 ,  find Adj.A

Q8. Find the inverse of  

 















 

 7
6
2

2
0
3

9
5
1
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Q9. For the matrix A =  3
1




















 1
2

2

2
1
2

2
2
1

 , verify

AA'  = I = A' A , A' is transpose of A

Q10. Explain Crammer's rule for solving three equations.

2.9 SUGGESTED READING

Aggarwal, C.S & R.C. Joshi : Mathematics for Students of Economics (New
Academic Publishing Co).

Allen, R.G.D. : Mathematical Analysis for Economists (Macmillan).

Anthony Martin & Norman Biggs : Mathematics for Economics and Finance-Methods
and Modeling.

Black, J & J.F. Bradley : Essential Mathematics for Economists (John Willey &
Sons).

Dowling, Edward T : Introduction to Mathematical Economics (Tata McGraw).

Henderson, James M & Richard E Quandt : Microeconomic Theory- A Mathematical
Approach (McGraw-Hill International Book Company.

Kandoi B. : Mathematics for Business and Economics with Applications (Himalaya
Publishing House).

Yamane Taro : Mathematics for Economics-A Elementary Survey (Prentice Hall of
India Pvt. Ltd.).
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M.A. Economics Lesson No. 3
C.No. 103 Semester - 1st Unit I

QUADRATIC EQUATIONS, EIGEN ROOTS AND EIGEN
VECTORS, FUNCTIONS : LINEAR AND NON-LINEAR,

CONVEX AND CONCAVE

STRUCTURE

3.1 Introduction

3.2 Objectives

3.3 Definition of Quadratic Equations

3.4 Eigen Vectors and Eigen Roots

3.5 Functions

3.5.1 Linear Functions and Non-Linear Functions

3.5.2 Concavity and Convexity

3.6 Summary

3.7 Lesson End Exercise

3.8 Suggested Readings

3.1 INTRODUCTION

Quadratic equations are very popular in economic analysis. The average cost curves,
cost curves, marginal cost curves and average variable cost curves are represented
by quadratic equations. Demand curve is also of quadratic form. Quadratic equations
are indispensable for the students of economics.
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3.2 OBJECTIVE

In this lesson, our effort is to help the students to solve the quadratic equations with
given techniques. After studying this lesson, you should be able to

- Solve quadratic equations

- Find the roots of the quadratic equation

- Eigen roots and eighteen vectors

- Different types of functions i.e. linear and non-linear, convex and concave.

3.3 DEFINITION QUADRATIC EQUATIONS

An equation of the type ax2+bx+c = 0 where a, b, c are constants, x is unknown
quantity is known as quadratic equation. Thus, 3x2+6x+7 =0, 5x2+9=0, x2+3x+1=0
etc are all quadratic equations. The equation ax2+bx+c=0, where a, b, c are constants,
is called standard quadratic equation. Here 'a' is the co-efficient of x2, b of x and c,
the constant term.

Definition Roots of quadratic equations

The values of the unknown quantities which satisfies the given equations are called
the roots of that equations

For example 2x + 6 = 0, is satisfied by x = -3

  - 3 is the root of 2x + 6 = 0

How to solve standard quadratic equation

ax2 + bx + c = 0

Sol. We take the constant term to the other side

ax2 + bx = -c

Divide both sides of the equation by a (co-efficient of x2), we get

x2 + 
 

a
c-x

a
b 

Add 
 2

2a
b









 to both sides 

 2
xof.effco2

1






 
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 2

a2
b

a
c2

a2
bx

a
b2x 















 

 

2

2

a4
b

a
c2

a
bx  








 

2a4
ac42b 

Taking square root, we get

 

2a4
ac42b

a2
bx 

= 
 

a2
ac42b 

 

a2
ac42b

a2
bx 

 

a2
ac42bb 

Note 1 : The two values of x are called the roots of the quadratic equation ax2+bx+c=0
and are denoted by Greek letters   (Alpha) and   (Beta). Thus,

 
 

a2
ac42bb,a2

ac42bb 



58

Ex. 1

Solve 8x - 2 =  
 

x
3

8x2 - 2x = 3

8x2-2x-3 = 0

Compare with ax2 + bx + c = 0

a = 8, b = -2, c = -3

 
 

a2
ac42bbx 

= 
 

8x2
)3)(8(42)2()2( 

= 
 

16
9642 

=  
 

16
102 

=  
 

16
8,

16
12 

=  
 

2
1,4

3 

The equilibrium price of a commodity is determined at the point where the quantity
demanded is equal to quantity supplied. Therefore by solving equation (i) and (ii)
simultaneously, we can find equilibrium price and quantity from (1)

 
 

2
q38p 
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Substitute in (ii)

 2

2
q38







 
+ 

 
172q3q

2
q382 











 
172q32

2q3q8
4

2q9q4864 

 68q32q482q964 

9q2-16q-4 = 0

 

9x2
)4)(9(425616q 

 

18
14425616 

 

18
40016 

 

18
2016

  = 2, -2/9

Rejecting negative as quantity bought or sold cannot be negative

 q  = 2,  p 
 

1
2

68
2

)2(38 

 Equilibrium price = 1, equilibrium quantity = 2

Ex.2 : The marginal cost curve of a firm under perfect competition is given as MC
= q2-8q-1, if the market price if fixed at Rs. 19 per unit, find the equilibrium of
output.
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Solution: Given

MC = q2-8q-1, and price = 19

We know under perfect competition, a firm is in equilibrium when MC=price

 q2 - 8q = 19

q2 - 8q - 20 = 0

 
 

2
80648q 

 

2
1248 

 

2
128 

= 10, -2

But q   -2,   q = 10

and equilibrium level of output = 10

Self-Assessment - I

1. The demand for good of an industry is given by the wequation pq = 100,
where p stands for price and q for quantity demanded. Supply is given by
the equation 20 - 3p = q. What is the equilibrium price and quantity demanded.

________________________________________________________

________________________________________________________

________________________________________________________

________________________________________________________
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3.4 EIGEN ROOTS AND EIGEN VECTORS

Given a square matrix A, if it is possible to find a vector V  0, and a scalar c such
that

AV = cV --- (i)

The scalar c is called the characteristic root, latent root or eigen value and
the vector sis called the characteristic vector4, latent vector or eigen vector. Equation
(i) can be expressed

AV = c IV --- (ii)

where A - cI is called the characteristic matrix of A. Since by assumption
V 0, the characteristics matrix must be singular and thus its determinant must vanish.

If A = 3x3 matrix, then

 

0
c33a32a31a

23ac22a23a
13a12ac11a

cIA 









with  cIA   = 0 in (ii), there will be an infinite number of solutions for V. To force

a unique solution, the solution may be normalized by requiring of the elements of v i

of V that     1v2
i

if

1) All characteristic roots (c) are positive A is, positive definite.

2) All c's are negative, A is definite negative.

3) All c's are non-negatives and at least one c=0, A is positive semi definite.

4) All c's are non-positive and at least one c=0, A, is negative semi definite.

5) Some c's are positive and others negative, A is sign indefinite.
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Ex. 1: Use Eigen values to determine sign definiteness for

 










43
310A

To find the characteristic roots of A, the determinant of the characteristic matrix A-
cI must equal zero. Thus

c

(10-c) (4-c) - 9 = 0

40-10c-4c + c2 -9 = 0

c2 - 14c + 31 = 0

Using the quadratic formula

 
 

2
)31(419614c 



 

2
7214 

 

2
485.814

 

2
515.5,

2
848.22

= 11.424 2.7575

c 1 = 11.424,  c2 = 2.7575

with both characteristic roots positive A is positive definite

Ex.2:

 


















310
520
364

A
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Sol.

 

0
c915

0c413
01c6

CIA 





















c

Expanding from third column

   013)c4)(c6()c9(CIA  c

 
 

0132cc4c624)c9(  





 




  2cc1011)c9(

99 - 90c + 9c2 - 11c + 10c2 - c3 = 0

-c3 + 19c2 - 101c + 99 = 0

will equal zero if

9 - c = 0 or (6 - c) (4-c) - 13 = 0

c1 = 0 24 - 6c - 4c + c2 - 13 = 0

c2 - 10c + 11 = 0

c = 
 

2
)11(410010 

   =  
 

2
48.710 

   = 8.74, 1.26

c2 = 8.74, c3 = 1.26

with all the latent roots positive, A is positive definite
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Ex. 3 :

Given  
 












36

66
A

Find (a) the characteristic roots and

(b) the characteristic vectors

Sol.

a)
 

0
c36

6c6
cIA 













(6-c) (-3-c) - 36 = 0

-18 - 6c - 3c + c2 - 36 = 0

c2 - 9c - 54 = 0

(c-9) (c+6) = 0

c1 = 9, c2 = -6

with one root positive and other negative, A is sign indefinite

b) Using c1 = 9, for the first characteristic vector V1

 
 

0
v
v

936
6c6

2

1 



















 
0

v
v

126
63

2

1 



















Normalizing

   1vv2 2
2

2
2 

 1v5 2
2 
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 2.0V2 

 2
21 2.0v2V 

Thus
 











2.0
2.0V

2

1

Using c2 = -6 for the second characteristics vector

 
0

v
v

)6(36
6)6(6

2

1 



















 
0

v
v

36
612

2

1 
















Normalizing

 1)v2(v 2
1

2
1 

 1v4v 2
1

2
1 

 1v5 2
1 

 2.0115v1 

 2
2 2.0v 

Thus
 














22
2.0

2.0
v
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Self-Assessment - II

1. If A = 
6
3

3
-2 ,    B = 

3
1

-4
5 , find a> eigen roots and, b> eigen vectors.

2. If A = 
3
3

3
-6 , find eigen vectors.

3.5 LINEAR FUNCTION :

Generally, the functions of the form, Q = A + bP are called linear because of the
fact that their graphs always turn out to be straight lines.

Functions of the form

Q =  a + bP + cY + d + cT are also called linear, since if all but two of the
variables Q, P, Y,  and T are called constant the relation between the remaining
two always produces a straight line as its graph if any of the variables which has
assumed constant were to change, this would alter the relation between any of the
others.

Non-linear functions : To appreciate what is implied by linear function, consider
other possible functions. The demand curve showing the relation between Q
and P, for given Y,  and T, could have been curved. Such a function is said to
be non-linear function or curvilinear.

3.6 CONCAVITY AND CONVEXITY :

A function f (x) is concave at x = a if in small region close to the point [a, f(a)]
the graph of the function lies completely below its tangent line. A function is
convex at x = a, if in an area very close to [a, f(a)] the graph of the function
lies completely above its tangent line. A positive second derivative at x = a,
denotes the function is convex at x = a and negative second derivative at x =a
denotes the function is concave at a.

Test to see if the function is convex or concave.

a) y = -2x3 + 4x2 + 9x - 15 at x = 3
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9x8x6y

dx
dy 2 

 
concave08368)3(128x12y

dx
yd
2

2



b) y = (5x2-8)2 at x = 3

 
 

x160x100)8x5(x20x10)8x5(2
dx
dy 322 

 
160x300

dx
yd 2
2

2



= 300(9) - 160  at x = 3

= 2540 > 0 convex

Self-Assessment - III

1. Define linear function and non-linear function.

________________________________________________________

________________________________________________________

________________________________________________________

________________________________________________________

2. What do you mean by concavity and convexity ?

________________________________________________________

________________________________________________________

________________________________________________________

________________________________________________________
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3.7 SUMMARY

In this lesson we have explained

- Quadratic equation

- Eigen roots and Eigen vectors

- Linear and non-linear functions

- Convex and concave function

3.8 LESSON END EXERCISE

i) Given the demand law, p = 85-4q-q2. Find the amount demanded (q) when
p= 40. If the price rises to 64, how much will the demand contract.

ii) The demand and supply equations are given by p - q = 1 & p2 + q2 = 25;
where p & q stand for price and quantity respectively. Find equilibrium price
and quantity

iii) Discuss the nature of roots of the following equations

x2-4x + 4=0

3x2+5x+7 = 0

iv) Define characteristic vectors. Find the characteristic roots and the characteristics
vectors of the matrix A given by

 


















200
320
321

A

3.9 SUGGESTED READINGS

Aggarwal,C.S & R.C.Joshi: Mathematics for Students of Economics (New Academic
Publishing co)

Allen, R.G.D. ; Mathematical Analysis for Economists (Macmillan)
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Anthony Martin & Norman Biggs; Mathematics for Economics and Finance-Methods
and Modeling

Black, J & J. F. Bradley : Essential Mathematics for Economists (John Willey &
Sons).

Dowling, Edward T : Introduction to Mathematical Economics (Tata Macgraw).

Henderson, James M & Richard E Quandt : Microeconomic Theory- A Mathematical
Approach (Mcgraw-Hill International Book Company.

Kandoi B : Mathematics for Business and Economics with Applications (Himalaya
Publishing House).

Yamane Taro: Mathematics for Economics-A Elementary Survey (Prentice Hall of
India Pvt. Ltd.).

*******
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M.A. Economics Lesson No. 4
C.No. 103 Semester - 1st Unit I

CONCEPT OF SEQUENCE, LIMIT OF SEQUENCE
CONCEPT OF LIMIT AND CONTINUITY, ECONOMIC

EXAMPLES AND APPLICATIONS

STRUCTURE

4.1 Introduction

4.2 Objectives

4.3 Sequence

4.4 Concept of Limit

4.4.1 Limit of a function

4.4.2 Rules to find the limit of a function

4.4.3 Continuity of a function

4.5 Economic Application

4.6 Summary

4.7 Lesson End Exercise

4.8 Suggested Readings

4.1 INTRODUCTION

Calculas an important branch of mathematics with a wide range of application of
based, in general, on the idea of a limit what gives calculus its power and distinguishes
it from algebra is the concept of limit. Sometimes, we are interested in the limiting
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behaviour of a function as the independent variable approaches a finite or infinite
value. We may be interested in determining the limiting saturation levels of sales or
profit when promotional effort is increased or the limiting value of learning as the
number of hours of study increases.

4.2 OBJECTIVES :

After reading this lesson you would be able to understand

- Concept of sequence.

- Limit of sequence

- Concept of limit and continuity

- Economic application of the limit.

4.3 SEQUENCE :

Let y =   1  , where
  2x

Y is a single valued function of x. To each other value of x, there corresponds one
and only one value of y. Let us pose a question. How does the function behave as
a sequence of values are allotted to x according to some law? From the above
function, we get

x : 1 2 3 4 5 _ _ 1000 _ _ _.

y : 1/2 1/4 1/6 1/8 1/10 _ _  1/2000 _ _ _.

To the x-sequence, there corresponds a y-sequence. Do we get an idea about the
behaviour of the function from the y-sequence has been constructed according to
some value. It is not a collection of some arbitrary numbers. The idea one gets is
that as x becomes larger and larger, u or f (x), becomes smaller and smaller. Let us
go ahead and say that as x tends to infinity, y tends to zero. We cannot make it
equal to zero by making x larger and larger, but we can make it very close to zero.

Let us consider another function

Y = 3 - 1/x
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The values of y will behave as

x : 1 2 3 4 5 _ _ 1000 _ _ _.

y : 1/2 1/4 1/6 1/8 1/10 _ _  1/2000 _ _ _.

Thus, as we assign larger and larger positive values to x the corresponding y -
sequence or the function y = 3 -1/x behave in such a way that it gets closer and
closer to a limit 3. Let us form the sequence of negative integral of x, and see how
the function 3 - 1/x behaves

x : -1 -2 -3  _ _ -1000 _ _ - 1000

y : 4   7/2   10/3  _ _  301/100 _ _3100/1000

The above pair of resulted sequence shows that x tends to minus infinity, the function
y = 3 -1/x tends to the limit 3.

In this way, we can establish x - sequence and the corresponding y sequence for
other function such as y = 1/x+3, y = 2 ± (-1)X, y = x2+x+1 and so on these
different pairs of associated sequences lead to some interesting possibilities. Thus

i) f(x) tend to L as x tends to infinity. In symbols

Lt f(x) = L, where L is finite

x   
ii) f(x) tends to infinity as x tends to infinity. In symbols

Lt f (x) =    
x    

iii) f(x) tends to minus infinity as x tends to infinity. In symbols

Lt f(x) =    
x   

iv) f(x) tends to limit L, as x approaches i.e. Ltf (x)=L, Where C ± L are

both x    finite.
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4.4 THE CONCEPT OF LIMIT

Let y=f(x), be a function of x. Limits describe as to what happens to a function f(x)
as its variable x approaches to a particulars value say 'a'.

A variable x is said to approach a particular value 'a' if x takes a succession of
values, nearer and nearer (but never equal to) a  i.e. each, succeeding value and
there is no end to this dynamic process of coming nearer and nearer to 'a' in this
process, the absolute value |x-a| becomes smaller and smaller can be made as
small as we like and denote this number by   (read as epsilon)

Where   is any arbitrary number which may be as small as we please

Form the figure, it is clear that x can approach 'a' either from the left hand side of
right hand side.

When x approaches 'a' from the left, x always remain less than 'a' but x-a becomes
smaller and smaller. We denote this fact by writing x  a - or x    a
When x approaches 'a' from the right, x always remains greater than 'a'. We denote
this fact by writing 'x'   a+  or x   a-

4.4.1 Limit of a function

A function f(x) is said to tend to the limit 'I' as x tends to A. i.e. Lim = 1,

x a
If given any positive number , however, small

We can find a number  δ  (depending on  such that [f(x) - 1|<  whenever

|x-a|<  δ . Thus
 

ax
Lim


 f(x) = 1 if |f(x)-1|< whenever |x-a|<  δ

  

 

 a 
a
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Theorems on limits

Let f1(x) and f2(x) be any two functions of x and k and a be any constants then.

Th1 The limit of a constant is the constant itself, i.e,

 
ax

Lim


K = K

Th2, The limit of the product of a constant and a function is equal to the product of
the constant and limit of the function i.e.

 
ax

Lim


[K, f(x)] = K [  ax
Lim


 f1(x)]

Th3, The limit of the sum of two (or more) function is equal to the sum of their limits
i.e.

 
ax

Lim


 [f1(x)+f2(x)] =  ax
Lim


 f1(x)+  ax
Lim


 f2(x)

Th4, The limit of the different of two (or more functions is equal to the difference of
their limits, i.e.

 
ax

Lim


 [f1(x)-f2(x)] =  ax
Lim


 f1(x) -  ax
Lim


 f2(x)

Th5, The limit of the product of two functions is equal to the product of their limits,
i.e.,

 
ax

Lim


 [f1(x) f2(x)] = [ 
ax

Lim


 f1(x)] [ 
ax

Lim


 f2(x)]

Th6, The limit of the quotient of two function is equal to the quotient of their limits
provided the limits of the quotient is not zero i.e.

 
ax

Lim


 
(x)faxLim(x)fLim

(x)f
(x)f

21ax
2

1











provided the limit of the denominator is not zero i.e.  
ax

Lim


f2(x)  o
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4.4.2 Rules to find the limit of a function

1) For finding  ax
Lim


 f(x), put x=a directly

in the expression of f(x), provided we do not get a form of the type 0/0 or a form in
which denominator is 0 and hence find the limiting values.

2)     In  ax
Lim


 f(x), if the expression of f(x), after putting x = a, attains the form 0/0

or a form in which denominator is 0 then put x=a+h, h being a small number so that

when xa, h0 and  ax
Lim


f(x) =  ax
Lim
h

 (a+h)

Ex.1 Evaluate i)  2x
Lim (x2-5x+6)

   ii)  0x
Lim


(x2-1)

  iii)  xLim
0x

Solution :

i)  2x
Lim  (x2-5x+6) =  2x

Lim  x2-  2x
Lim   5x+  2x

Lim  (6)

= 22-5(2)+6

= 4-10+6

= 0

ii)  1x
Lim


 (x2-1) =  1x
Lim


 (x2) -  1x
Lim


 1

= 12-1 = 0

Or

  1x
Lim


 (x2-1) =  0x
Lim


 [(1+h)2-1]

=  
6x

Lim


 [1+2h+h2-1]
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=  0x
Lim


 2h+h2

=  (0)2+2(0)

= 0

iii)  xLim
0x

  = 0 when  x  0+ but becomes non-real  Lim does'nt exist

Evaluate :

(i)  
2x

Lim  

 

0
0

22
42

2-x
4x

Lim

Lim

2-x
4x 22

0x

2x
2















which is undefined so in such question, we proceed as

   Lim 
 















 2h)(2
4h)(2Lim

2-x
4x 2

0x

2

=   
 
















 2h2
4-h4h(4Lim

2

0x

=  
 






 
 h

4hhLim
2

0x

= 
 





 

 h
4)h(hLim

0x

=  4)(hLim
0x




=  4

ii)
 

6xx
6)5x(xLim 2

2

2x 



  = 

 

0
0

624
6104

6)x(xLim
6)5x(xLim

2

2x

2

2x 











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which is undefined so we proceed as follows

 
 

5
1

)3x(
)3x(Lim

2)3)(x(x
2)3)(x(xLim

1)x(x
6)5x(xLim

2x2x2

2

2x




















iii)
 

0
0

0
a0a

x
axaLim

0x



 = undefined

 In such questions, we would rationalize first and then find the limit.

 



















 axa
axa

x
axaLim

x
axaLim

0x0x

     
 












 a

x
xax(

Lim
0x

     
 










 axa
1Lim

0x

     
 

a


a
1

     
 

a2
1



Rule to find the limit when x    or x   -   
In question involving limits, we first divide the numerator and the denominator

by the highest power of x in the denominator and then evaluate the limit as

x    or x   -   

Example : Evaluate  
 













 2

2

x 62
24Lim

xx
xx



78

Sol. If we directly put the limit, we get   /   which is undefined. So we divided the
function by the highest power of x in the denominator, vix. x2

 
 











 2

2

x 62
24Lim

xx
xx

 
























612

214
Lim

2

2

x

xx

xx

As x   , 1/x   0
 

600
004 =




 

3
2

6
4 = 

Example : Prove that  
 

e
n

n







 



11Lim
x

Sol.
 

x

n

x
n

1

0xx
)1(Lim11Lim 






 



 
























 


.....

n
1

!2
)1n(n

n
1.n1(Lim

n
11Lim

2

x

n

x

[By Binomial Theorem]

 













 





 






 

 !3
1

n
21

n
11

!2
1

n
1111Lim

x

 







 ...

.3
1)01)(01(

!2
10111

=   .....
!3

1
!2

1
!1
11

= e.
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Example : Prove that  
 

n
x
x n







1)1(Lim
x

Sol. We Know that

 
 

......
2

)1(1)1( 2 


 x
L
nnnxx n

      [By Bionomial Theorem]

 






















 











 


 x

xnnnx
x

x
x n 1.......

!2
)1(1

Lim1)1(Lim

2

xx

 















 


 x

.......x
2

)1n(nnx
Lim

2

x

 















 





 x

.......x
2

)1n(nn
Lim

2

x

 00n 

 n

 Example : Prove that
 

,Lim 1

x







 n

nn

a
na

ax
ax

 a > 0 and n is any rational nos.

Solution : Let x=a+h, so that as xa,  h0
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




 













 m
a)ha(Lim

a)ha(
a)ha(Lim

ax
axLim

nn

0h

nn

0h

nn

ax

 






 


 h
a)a/h1(aLim

nnn

0h

 















 





 h

a
!2

)a/h)(1n(na/h.n1(a
Lim

n
2

n

0h

 

n

2
nnn

0h
a

h

....
!2

)a/h)(1n(na/.h.n.aa
Lim 















 




terms  of   higher   power   of  h

     

terms   of    higher    power   of   h

Cancelling h as h  0

 00a.n 1n  

Self-Assessment - I

1. Evaluate the following :
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a)  (2 + 3x + x2)

b)  
1x

Lim


x  - 12

x  + 12

c)
3

 5 x

4.4.4. Continuity of a function

A function of f(x) is said to be continuous at a point x     a, if

i) f(a), the value of the function f(x) at x = a is defined.

ii) Lim.f(x) exists, i.e.

 





aa

xf
xx

0)-f(a0)f(aorLimf(x))(Lim

iii) Value of the function at x=a=limit of the function at x=a, i.e.

f(a) =  x

In short, for function to be continuous limit and value should both exist and be
equal to each other.

Continuity in an interval

A function f(x) is said to be continuous in an interval (a,b) or a<x<b if it is continuous
at every point of the interval. Since a and b are lower and upper ends of the interval
f(x) is continuous at x = a, if

f(a) =   )0(Lim
0x




xf
a  and continuous at x=b if

 )0()(Lim)(
0x




bfxfbf
b

Definition of a continuous function at a point x = a, if, corresponding to any
arbitrary assigned positive number  , however small (but not equal to zero), there
exists a positive number   , such that

  |)()(| afxf
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If such a    , as defined, cannot be found then the function is said to be discontinuous
at x = a

Discontinuous function

A function is said to be discontinuous at x = a, if any of the following three conditions
happens

i) Value of the function at x = a, i.e. f(a) does not exist.

ii) Limit of the function at x = a doesn't exist

i.e.  )0a(f)0a(for)x(fLim)x(fLim
axax




iii) Value of limit, at x = a  i.e.

  )x(fLim)a(f
0x



Example : Examine the continuity of the function f(x) at x = 1 and x = 2

If  f(x) = x2 when 0 < x < 1

=x when   21  x

=x3/4 when   32  x

At x=1, f(x)=x  f(1) = 1

Also
   1)x(Lim)x(fLim 2

1x1x




   1)x(Lim)x(fLim 2

1x1x




Since    )1(f1)x(fLim)x(fLim
1x

1x






 [Value of function]

i.e. Limit of the function = Value of the function

Hence, the function f(x) is continuous at x=1

At x=2, f(x) = x3/4  f(2)=23/4=2
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Also
 

  2
4
2

4
xLim)x(fLim

33

2x2x








 
  2

4
xLim)x(fLim

3

2x2x








Since limit of function = Value of function

Hence the function is continuous at x=2

Example : Find the points of discontinuity of function n

f(x) = 2x2+6x-5 / 12x2+x-20

Sol. The given function f(x) is undefined at the points where the denominator viz.
12x2+x-2 is zero

   The points of discontinuity of the function are given by the solution of
12x2  + x - 20 = 0

 

)12(2
)20)(12(411 

x

 

24
96011 



 

24
36'

24
32

24
311 






 

4
5'

3
4



Hence the points of discontinuity of the given function f(x) are x =-4/3 and x=5/4

4.5 ECONOMIC APPLICATION

Example 1 : If MR=AR (1-1/e), where e is the price elasticity of the demand, find
the limit of and interpret the phenomenon
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Sol. We have to find the   
x

Lim MR. We know that e   , 1/e  0. Also ARAR
is constant

 





 


)

e
11(ARLimMRLim

ex

  01AR 

 AR

Which in economics, means that when the demand is perfectly elastic (e   )

then MR and AR are equal.

Example 2 : The consumption expenditure (CE) as a function of personal income
(Y) is given by CE = 100+0.7Y ii) CE = 150+0.84. Find the limit of saving S
where S = Y - CE. When Y tends to 500

Solution : We know S = Y - CE

i) Since CE = 100+0.74

   S = Y - (100+0.7Y)

= Y - 0.74 - 100

= 0.3Y - 100

 )100Y3.0()s(Lim)s(Lim
500y500y




= 0.3 X 500 - 100

= 150 - 100

= 50

ii) S = Y - CE

= Y - (150+0.84)

= Y - 0.8y - 150
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500y
SLim


 = 0.2 (500) - 150

= 100 - 150

= -50

 ]84.0150[LimCLim
500y500y




= 150+0.8 (500) = 150+400 = 550

Hence when income (Y) = 500 consumption (C) = 550 and saving (S) = - 50 i.e.
there is negative saving of 50 (dissaving)

4.6. SUMMARY :

We end this lesson by summarizing what we have covered

1. The concept of sequence.

2. The limit of a function.

3. Continuous and discontinuous function.

4. Use of limit in economics.

4.7. LESSON END EXERCISE.

1) Write a note on a limit of a function.

2) Evaluate :-

(i)
 

ax
axLim

22

ax 




(ii)
h

1)h1(Lim
n

0h




(iii)
1b
1aLim x

2

0x 




3) Give difference between limit and value of a function.
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M.A. Economics Lesson No. 5
C.No. 103 Semester - 1st Unit I

PRINCIPLES OF DIFFERENTIATION, RULES OF
DIFFERENTIATION, DIFFERENTIATION OF IMPLICIT

FUNCTION, PARAMETRIC FUNCTION

STRUCTURE

5.1 Introduction

5.2 Objectives

5.3 Average Rate of change and Instantaneous

5.3.1 Differentiation ‘ab inito’ of form or by first principle method.

5.3.2 Derivatives of standard functions

5.3.3 Basic Theorems on Differentiation

5.3.4 Differentiation of implicit function

5.3.5 Parameater Equations and their derivatives

5.4 Summary

5.5 Lesson End Exercise

5.6 Suggested Readings

5.1 INTRODUCTION

Differentiation is a mathematical technique of exceptional power and versatility. It
is one of the two central concepts in the branch of mathematics called calculus and
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has a variety of applications in almost all branches of learning.

Differentiation which is mainly concerned with finding the rate of change in a given
function y = f (x) with respect to the independent variable is very useful not only in
Economics but in all other natural and social sciences. In Economics, we are frequently
concerned with changes like growth, increasing and decreasing returns, costs etc.
the concept of differentiation finds wide application in the field of marginal analysis,
problems of optimization and the analysis of rate of change.

5.2 OBJECTIVES
After going through this lesson you should be able to understand

- Average, Marginal and instantaneous rates of change.

- Differentiation / derivative.

- Differentiation of standard functions.

- Rules / Law of Differentiation.

- Differentiation of implicit function, parametric functions.

5.3 AVERAGE RATE OF CHANGE AND INSTANTANEOUS RATE OF
CHANGE

The average rate of change is the average value of the variable under consideration
over an interval and instantaneous rate of change of a point is the limiting value of
the average rate of change at that point.

Thus, if y = f(x) be a single value function of x, and if x changes to x+  x and y
changes to y +   y, the average rate of change in the function f(x) on the dependent
variable y per unit.

Change in x is given by:-

ARC =

 

 

h
xfhxfor

x
xfxxf

xxx
yyy

x
y

xinChange
yinChange

)()()()(
)(
)(













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If it is possible to calculate the limiting value of this expression  y/  x as   x 0,
then the limiting value of the average rate of change is defined as the instantaneous rate

of change (IRC) and is equal to   
 

0x
x
yLim







 
 

0x
x

)x(f)x(fLim





  

0n
h

)x(f)hx(fLim





 
  IRC  =

Derivative (or Differential Co-efficient) and Differentiation:-

The derivative or differential co-efficient of a function say y = f(x) with respect to
the independent variable x is the instantaneous rate of change or simply rate of
change in the function f(x) w. r. t.  x

Step I :   Let y = f(x) (1)

Step II :  If x changes to  (x+  x) and y changes to y +  y so that the change

(+uc/-ue increment) in x is   x and the corresponding change (or increment) in y is
  y, then,

y +  y = f (x +  x) (2)

Step III :   Subtract (2) from (1) i.e. 2 - 1

y +  y - y = f (x +  x) - f(x)

 y = f (x+  x) - f(x) (3)

Step IV :   The ration of increment of y and x (also known as increment ratio
differential and defined as the average rate of change in y or f(x) is obtained by
dividing   y with   x is

 

x
)x(f)xx(f

x
y








(4)

Step V :    Taking limits of both sides as   x  0 we get:
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0x
x
yLim







 

 

0x
x

)x(f)xx(fLim






(5)

Lim 
 

x
y


 , defined as the instantaneous rate of change (IRC) in y or f (x), is written

as 
 

dx
dor

dx
dy  (y) and is defined as the derivative of differential co-efficient

by y w. r. t. (x). Thus,

 


dx
dy

 

 

0x
x
yLim





 

 

0x
x

)x(f)xx(fLim






 

0h
h

)x(f)hx(fLim






(6)

The process of finding the derivative is called differentiation. Since five steps are
involved this is known as derivative by five step rule or from first principle or from
abinitio. The other notations for the differential co-efficient of y w. r. t. x are

 

.Df,Dy:f,y

,f,y),x('f,'y,
dx
df,

dx
dy

xx

Graphical interpretation of the Derivative.

Let y = f (x) be a continuous function of x as shown by the curve AB fig. 1

Let p (x, y) be any point on the curve and let Q (x+  ,x  y +  y ) be another point
in the neighborhood of P.

Join QP and extend the line to meet x-axis at R. Let LQR × Q. Draw PC
and QD perpendiculars on OX and PE  on DQ
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Now PE = CD = OD - OC =   X

EQ =   y

and 
 






 tan

PE
E

x
y

Now as   P, , 0x    and the limit of  x/y   If it exists, is called the

derivative of y. w. r. t. x  and is expressed as:-

Lt.
 

 




 tantan

Qy
Lt

0x
x

y

= Slope of the tan Pt.

= Slope of the curve at P.

= dy / dx.

Hence dx
dy 

 at any point P(x, y) on the curve f (x) is equal to the slope of the tangent

at P (x, y). This is very important and useful result and is of much utility in economic
theory.

5.3.1. Differentiation 'ab inito' from first principle

 When derivatives are obtained without making use of established standard forms
or theorems on differentiation, the technique of doing so, is described as the
differentiation from first principle. The following steps i.e. involved.

i) Let y = f(x) be a function of one variable x.

ii) Let  x  be an increment in the value of x and  y  be the corresponding
increment in the value of y.

 )xx(fyy  (1)

iii) Find the increment in the dependent variable y, corresponding given increment
in the dependent variable x, i.e.
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 )x(f)xx(fy  (2)

iv) Find the increment ratio by dividing both sides of 2 by

 

x
)x(f)xx(f

x
y








(3)

v) Proceeding to limits of  x/y   as  x   0 gives the required derivative

of the function f(x) w. r. t. x.

 
 


dx
dy

0x
Lt

 x
)x(f)xx(f




The above expression may also be written as

 

h
xfhxf

n
Lt

dx
dy )()(

0





Example:- Find the derivative of x2 w. r. t. x from first principle.

Sol :- y = x2

Let  x  be an increment in the value of x and  y  the corresponding increment in y..

         y +  y   =  222 )x(xx2x)xx( 

 2)x(xx2y 

Dividing both sides by  x
 

xx2
x
y





Proceeding to limits as  0x  , we get

 
x20x2)xx2(

0x
Lt

dx
dy






Example:- Find, from definition, the derivatives of  x
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Sol. Let y = x

 xxyy 

 

xxx
xxxy

xxx
xxxxxx

yxx

yxxy















 

xxx
x





Dividing both sides by  ,x  we have

 

xxx
1

x
y







Taking limits as  ,0x   we get

 

xxxxxxx
Lt

dx
dy

2
1

0

1
5
1

0





5.3.2 Derivatives of standard functions :-

The derivatives of standard functions will enable us to arrive at some standard
forms which will help us to quicken the process of derivation.

Theorem:- Find the derivative of xn w. r. t. x

Let y = xn
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nnn

n

n

x)
x
x1(x

x)xx(y
)xx(yy










 







 


 1)

x
x1(x nn

Expanding by Binomial Theorem

 
1

x
x

i2
)1n(n

x
xn1xy

2
n 














 







 

 
















 

2
n

x
x

!2
)1n(n

x
x.nx

Dividing both sides by  ,x  we get.

 





 





 

x
x

!2
)1n(nnx

x
y 1n

Taking limits as  ,0x x  we get

 
1n1n nxn.x

dx
dy  

From this standard rule, in order to obtain the derivative of a power function such
as xn reduce the power of x by 1 and multiply it by original power. i.e.

 

xx
dx
d 6)( 6 

!2
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2/3

2/32/1

2
1

2
11

x

xx
dx
d

xdx
d










 

Theorem : Obtain the derivative of (ax +b)n where n is any constant.

 

 
 

 





 












1
bax

a1)bax(

)bax(xabaxy
xabaxyy
b)xx(ayy

)bax(yLet

n

nn

n

n

n

Because 
 

,1
bax

xa,0x 



  therefore  
 













bax

xa1  can be expanded

by binomial theorem.

 









































 1
bax

xa
!2

)1n(n
bax
xan1)bax(y

2
n

 





 









bax

xa
21

)1n(nn
b
x

ax
a)bax( n

Dividing by   x , we get

 





 






 

bax
xa

!2
)1n(nna)bax(

x
y 1n

Proceeding to limits as  ,0x  we get
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1

1

)(

)()(









n

n

baxna

nabax
dx
dy

Therefore the standard result is

 
1)()(  nn baxnabax

dx
d

dx
dy

Rule: In order to obtain the derivative of any constant power of a linear function of
the type (ax+b) as:-

Reduce the index by unity and multiply whole by original power and co-efficient of
x.

The above rule can be used to write down the derivatives of function stated below
at once.

 

5

166

5/1

1
5
4

5/4

)24(12

)2()24()24(

)122(
5
8

2)122(
5
4)122(

x

xx
dx
d

x

xx
dx
d















5.3.3 Basic theorems on differentiation

1. Derivative of a constant.

Prove that 
 

0)( a
dx
d

 for all x

Proof :- Let y  = a where a is a constant

:
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0y
aay
yay
ayy






Dividing both sides by  ,x  we have

 
0

x
y 



Proceeding to limits as  ,0x   we get

 

0)25(

0)6(

0)(

0









dx
d

dx
dExamples

a
dx
d
dx
dy

2. Derivative of additive constant disappears on differentiation

Prove that  
 

)u(
dx
d)au(

dx
d



Proof : Let y = u + a

 

)aU(U)aU(y
U)aU(

a)UU(yy






 Uy 
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Dividing both sides by   x

)a(
dx
d)aU(

dx
dHence

)U(
xx

y








 

Which shows that additive constant disappear on differentiation :-

Examples :-

 

233

22

12)4()64(

12)6()56(

xx
dx
dx

dx
d

xx
dx
dx

dx
d





Derivative of a multiplicative constant:-

Prove that    
 

)U(
dx
da)aU(

dx
d



Where a is a constant & U = f (x) is derivative at x.

Proof :-   y = a U

 

Uay
ayUaaUy

yaau)UU(ayy






Dividing both sides by  ,x  we get

 

x
Ua

x
y








Taking limits as  ,0x   we get



99

 

4

4

55

30

506

)()6(

)()(

)(

x
x

x
dx
dx

dx
dExample

U
dx
daUa

dx
dHence

U
dx
da

dx
dy











x

Derivative of sum or difference of Functions :-

Prove that :-

 

)()()( v
dx
du

dx
dvu

dx
d



Where U & V are derivable functions at x.

Proof :-   Let y = u ± v

  )vv()Uu(yy 

vUy 

Dividing by  x  we get

 

x
v

x
U

x
y












Taking limits as  ,0x   we get

 
)v(

dx
d)u(

dx
d

dx
dy


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Hence
 

)v(
dx
d)u(

dx
d)vu(

dx
d



Similarly we can prove
 

)v(
dx
d)u(

dx
d)vu(

dx
d



Hence
 

)v(
dx
d)u(

dx
d)vu(

dx
d



Therefore, the theorem states that the derivative of algebraic sum / difference of
two function is equal to the corresponding algebraic sum of their derivatives, provided
these derivatives and can be generalized to cover the case of more than two functions.
 

dx
du

dx
du

dx
du

dx
du

dx
dy

u....uuy

4321

n21





Examples :-

1)

 

xxx
dx
dx

dx
dx

dx
dx

dx
d

dx
dx

dx
dx

dx
dx

dx
d

xxx
dx
d

81524

)12()(4)(5)(6

)12()4()5()6(

)12456(

23

234

224

234









2)

 

2/3

2/32/1

2/1

2
1

2
1

)()(

)()(

1

xx

x
dx
dx

dx
d

x
dx
dx

dx
d

x
x

dx
d














 




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Derivative of a product

Prove that  
 

)()(.)( u
dx
duv

dx
duuv

dx
d

  where u and v are two derivable

functions of x

Proof :-  Let   y - uv

 

v.uuvvuy
v.uuvvuuv

)vv()Uu(yy






Dividing both sides by   x , we get

 

x
v.u

x
uv

x
vu

x
y
















As  .0u,0x 

 

dx
du.v

dx
dvu

dx
dy



Thus, the theorem states that the derivative of the product of two functions
= first  function × derivat ive of second + second function × derivat ive of
first function:-

Example :- 
 

32 )5x()2x(
dx
d

 Sol.

 

 

 
 

)16x5()5x()2x(
10x26x3)5x()2x(

)5x(2)2x(3)5x()2x(
)2x()5x(2)5x()2x(3

1)2x(2)5x()1()5x(3)2x(

)2x(
dx
d)5x()5x(

dx
d)2x(

2

2

2

322

322

2332












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Example :-  If   )x/1x()x/1x( 

Sol.
   






 






 






 

x
1x

dx
d

x
1xx/1x

x
d

x
1x

dx
dy

  

)3x4x3(
x2

1x
Simply

x
11

x
1xx

2
1x

2
1

x
1x

x
11

x
1xx

2
1)x(

2
1

x
1x

x
11

x
1xx)x(

dx
d

x
1x

2
2/5

2
2/32/1

2
2/3

2
2/12/1












 






 



 






 







 






 



 






 







 






 







Derivative of a Quotient of two functions

Prove that :- 

 

2v
dx
dvu

dx
du.v

v
u

dx
d 









Where u and v are both derivable functions at x and v 0.

Proof :- 

 

vv
Uuyy

v
uy








v)vv(
vuuv

v)vv(
vv(uuu(v

v
u

vv
uuy














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Dividing both sides by  x  we get:-

 

)vv(v
x/vux/uv

x
y








Proceeding to limits as  ,0v&0x   we get

 

2

/./.
u

dxdvvdxduv
v
u

dx
dy 









Hence

 

2

/./.
u

dxdvvdxduv
v
u

dx
d 









The rule:-

 
dx
d

 (Quotient of the two functions)

=

 

2
x

.)Denom(

.)Denom(
d
dNum)rNumeninato(

dx
datorminDeno Denominator (N u m e r a t o r)

Examples:-

1)

 

 

2

2

2

22

2

2

2

22

2
2

x
1x5

x
1x5x10

x
)1(1x5()x10(.x

x

)x(
dx
d)1x5()1x5(

d
dx

x
1x5

dx
d















 

2)
 

x.t.r.w
8x7

x3
dx
d

2 








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8x7
x2124

8x7
x4224x21

8x7
)x14(x33)8x7(

)8x7(

)8x7(
dx
dx3)x3(

dx
d)8x7(

8x7
x3

dx
d

2

2

2

22

2

2

22

22

2




























3)
 













x1
x1

dx
d

 






































x1
x1()x1()x1()x1(

2
1

)x1(2
)x1(

)x1(
)x1(

2
1

)x1(

)1()x1(
2
1)x1()1()d1(

2
1)x1(

)x1(

)x1(
dx
d)x1()x1(

dx
d)x1(

2/1

2/1

2/1

2/1

2

2/12/12/12/1

2

2/12/12/12/1

 

2/32/1

2/12/1

2/12/1

)x1()x1(
1

x1
1

)x1()x1(
1

x1
)x1()x1(2















Differentiation of a function chain rule if y is a function u and is a function of x then:-
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dx
du

du
dy

dx
dy .

Let  x  be an increment in x and  u  be the corresponding increment in u and the
corresponding in y be  y

 

x
u

u
y

x
y














Proceedings to limits as  ,0y&u,0x   we get

0x0u0x 
 

dx
dy

du
dy

dx
dy



 

x
uLim.

u
yLim

x
yLim











Examples:- If y = 2w2 + 1, w = 2z2  Z = 2x + 3x2, find the derivative of y w. r. t. x

We know   
 

dx
dz

dz
dw

dw
dy

dx
dy ..

As

 

)x62)(x3x2(32
)x62()x3x2()x3x2(32

)x62()x3x2(4)z2(4
x3x2z,z2wBut

)x62()z4()w4(
dx
dz

dz
dw

dw
dy

dx
dy

x62
dx
dzx3x22

z4
dz
dwz2w

w4
dw
dy,1w2y

2

222

22

22

2

2

2



































z

,
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Example:-  4x2y 3 

Let y =  

 

4x2
x3

4x22
x6

dx
du)du/dy(

dx
dy

x6
dx
du

)4x2(2
1

u2
1u

dx
d

dx
dy

4x2uWhereu

3

2

3

2

2

2/13

2/1

3
























5.3.4 Differentiation of implicit function

Consider y =
 

54
2
2 x
x

This is an explicit function because it express y directly in terms of x. When this is
the form 4x2y - 2x+5, it becomes implicit function and y is said to be defined implicit
as a function of x.

Example :- Find dx
dy

 when x2 + y2 + 2y = 20

Sol. We have
x2 + y2 + 2y  = 20

Differentiation both sides w. r. t. x considering y as a function of x

2x + 3y dx
dy

 + 2 dx
dy

 = 0

x + y dx
dy

 + dx
dy

 = 0

(1 - 4) dy / dx = -x
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dy / dx = - 1
x
y

Note:- If we consider x as a function y, then 
 
dx
dy

 can be obtained by diff. the

function w. r. t. y thus.

2 x 
dx
dy  + 2y + 2 = 0

x 
dx
dy  + y + 1 = 0

x 
dx
dy  = - (y + 1)

dx
dy  = - 

1y
x


Example :- If x2 + 5x2 y + yx = 5. Find dy /dx

Sol :- Given x3 +  5x2 y + yx = 5

Differentiating both sides w. r. t. x, we get

 

xx5
yxy10x3

dx
dy

yxy10x3
dx
dy.x

dx
dyx5

0y
dx
dy.x

dx
dyx5xy10x3

dx
d)yx(

dx
d)yx5(

dx
d)x(

dx
d

2

2

22

22

23












 



 



Example: Find 
 
dx
dy

 when x2/3  + y2/3   = a2/3
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Sol :- x2/3  +  y2/3     =  a2/3

Differentiating both sides w. r. t. x

Consider y as a function of x

3/1

3/1

x
y

y
d

dx
dy






Example : If  ax2 + 2hxy +b y2 + 2gx + 2fy + c = 0

Find  dy / dx

Sol :- ax2 +2hxy + b y2  + 2gx + 2fy + c = 0

 

fbyhx
)ghyax(

dx
dy

g2hy2ax2
dx
dy)f2by2hx2(

0
dx
dyf2g2

dx
dyby2

dx
dyhx2hy2ax2

0
dx
dyf2g2

dx
dy.y2b

dx
dyxyh2x2a

0)1(
dx
d)y(

dx
df2

)x(
dx
dy2)y(

dx
db)xy(

dx
dh2)x(

dx
da 22












 




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Example : Find 
 

,
dx
dy

 when y = 
 

 ....xxx
Sol :-

 

yxy
yxy

.....xxxy

2 





Differentiating both sides w. r. t. x

2y 
dy
dx   1 + 

dy
dx

2y 
dy
dx  - 

dy
dx  = 1

(2y - 1) = 1 
dy
dx  = 1

 dy
dx  = 

1
2 1y

5.3.5 Parameter Equations and their derivatives :-

If x and y are both functions of a third variable, say t, then the equations are called
parametric equations. The variable t is called parameter.

x = f (t) (1)

y = f (t) (2)

The equation on 1 & 2 are known as parametric equations
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Example : If  x = 5t2 and y = 3t2, find dy / dx

Sol :- x = 5t2 y = 3t2

 

5
3

10
6

/
/

610





t
t

dtdx
dtdy

dx
dy

t
dt
dyt

dt
dd

Example :  Find 
 

dx
dy

 when x =   

 

3

2

3 1
3,

1
3

t
at

t
t



Sol :  x = 

 

23

3

23

3

23

33

2

23

3

33

)1(
)21(3

)1(
63

)1(
933
)1(

)3(33)1(
)1(

)13(33)1(

t
ta

t
ata

t
atata

t
tatat

t

t
dt
datat

dt
dx
























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3

3

3

4

3

23

23

3

23

3

23

44

23

223

23

3223

3

2

21
)2(

21
2

)21(3
)1(

)1(
)2(3

/
/

)1(
)32(3
)1(

96
)1(

333)1(
)1(

)1(33)1(

1
3

t
tt

t
tt

tat
t

t
tat

dtdx
dtdy

dx
dy

t
tat
t

atatat
t

tatatt
t

t
dt
datat

dt
dt

dt
dy

t
aty











































5.4 SUMMARY

We conclude this lesson by summarizing what we have covered in it.

FUNCTION DERIVATIVE

i)
 

)x(
dx
d n

nxn-1

ii)
 

n)bax(
dx
d

 na(ax+b)n-1

iii)
 

)aU(
dx
d

 du/dx
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iv)  
 

)an(
dx
d

a. du/dx

v)  
 

)vu(
dx
d


 

)v(
dx
d)U(

dx
d



vi)  
 

)U(
dx
dv)v(

dx
dU)Uv(

dx
d

  Derivative of two function (Product is

first function × derivative second + second function × derivative of first function.

vii)  

 

2v

)v(
dx
dU)U(

dx
dv

)V/U(
dx
d 



i.e. Derivative of two functions of the type U/V is

  

 

2

rrr

Dr

)D(
dx
dN)N(

dx
dD 

viii) Chain rule : If y is a function of U and U is a function x, then

 
 

dx
du

du
dy

dx
dy



ix) Differentiation of implicit function.

x) Differentiation of parametric function.

5.5 LESSON END EXERCISE

Q.1. a) Find the differential co-efficient of (ax+b)n, from first principle.

b) Obtain, the derivative of xn w. r. t. x

Q.2. If y = 
 







 






 

x
1x

x
1x , find the derivative of y w. r. t. x.

Q.3. If y =   

1x
)1x2()2x(

3 
 , find dy / dx
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Q.4. If y = 2w2 + 1, w = 2,  z2 = 2x + 3x2, find the derivative of y w. r. t. x.

Q.5. Find dy / dx

(i)  x5 + y5 + 5xy-c = 0, ii) x3 + y3 = 3xy
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6.1 INTRODUCTION

So far we have considered functions of only one independent variables viz., y =
f(x). But in most of the problems in economics we are frequently confronted with
functions of more than one (independent) variable. For example.

i) Quantity demanded (x) of a commodity depends not only on the price (p) of
the commodity but on the prices (p1, p2, ….) of other commodities, income
(y) of the consumer etc. i.e. x is a function of more than one (independent)
variable e.g., x = xd = f (p1, p2, …., y).

ii) Quantity supplied (x) of a commodity is a function of not only price (P) of the
commodity but a function of the prices (p1, p2, ….) of the technology (T) etc.
i.e., x = xs = (p1, p2, …., p1, p2, ….T).

iii) The utility (u) derived by the consumer depends on the quantity consumed of
various commodities (x1, x2 …….) i.e. U = f(x1, x2 …….).

iv) The level of production (or output) Q of a commodity depends on the inputs
(L&K) etc. i.e. Q = f (L, K) etc.

6.2 OBJECTIVES

After reading this lesson, you would be able to understand.

- Function of several variables.

- The partial derivates with examples.

- Total differential, total derivative and examples.

- Application.

6.3 FUNCTION OF TWO VARIABLES

Let U be a symbol which has one definite value for every permissible pair of
values of the independent variables x and y then u is called a function of two variables
x & y, we write it as :-

U = f (x, y) or u (x, y)

Similarly, a function of n variables may be written as:-
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U = U (x1, x2 …….xn) or U = f(x1, x2 …….xn)

Where x1, x2, …… xn are the n independent variables and corresponding to
each set of values of the n independent variables (x1, x2 ….. xn) we get on definite
value of u.

Value of a function of two and more variables

If U = f(x, y) is a function of two variables, then f (x1, y1) is known as the
value of function at the point (x1, y1) i.e. when x = x1 and y = y1

For example :-

If U = x2 - y2 + 2xy - 10 then

i) f (0, 0) = value of the function at x = 0, y = 0 = 0 + 0 + 2(0) (0) - 10

= -10.

ii) f (-5, 2) = (-5)2 - (2)2 + 2(-5) (2) -10 = 25-4-20-10 = -9

iii) f (2,-1) = (2)2 - (-1)2 + 2(2) (-1) - 10 = 4 - 1 - 4 - 10 = 11.

If U = f (x1, x2, x3) is a function of three variables, then f(x11, x21, x31) is
called value of the function at the point (x11, x21, x31).

For Examples if U = x1
2  +  x2

2   +  x3
3 then,

f (0, 0, 0) = (0)2 + (0)2 + (0) = 0

f (1, 2, 3) = (1)2 + (2)2 + (3)2 = 1+4+9 = 14

f (0, 2, 0) = (0)2 + (2)2 + (0)2 = 4.

Functions of two and more variables i.e. multi-variable functions in economic
theory

(i) Demand Function :-  xd
i  = fI (p1, p2 ; v)  [ i = 1, 2]

a) If there are two consumer goods X1 and X2 with x1, & x2 as the quantity
demanded of the goods X1 and X2 and p1, p2 the prices of the two goods respectively
and y is the income of the consumer, then

x1
d = f1 (p1, p2 ; y)



117

x2
d = f2 (p1, p2 ; y)

b) If there are n consumer good x1, x2 …., xn with prices p1, p2 …..pn and
quantity demanded of the n goods as x1, x2, ….. xn respectively and y is income of
the consumers.

x1
d = f1 (p1, p2 …….. pn ; y)

x2
d = f2 (p1, p2 …….. pn; y)

ii) The supply function:-

xs
1 = f1 (p1, p2 ; p1, p2 ; T)

If there are two consumer goods X1, X2 with quantity demanded and prices
of the two goods as x1, x2 & p1, p2 respectively.  p1, p2 being prices of 2 inputs and
T being the level of technology, then.

X1
s = f1 (p1, p2 ; p1, p2 ; T)

X2
s = f2 (p1, p2 ; p1, p2 ; T)

iii) The utility function:- U = U(X1, X2) if there are 2 commodities X1 and X2

with x1, x2 as the quantities consumed respectively of the 2 commodities, then the
level of satisfaction derived by a consumer i.e. the utility function of the consumer
can be written as:-

U = f (x1, x2)

In case of n commodities

U = f(x1, x2 ………. Xs) for n goods

iv) The production function:- Q = f (x1, x2) if x1, x2 are the quantities of two
inputs and Q is the level of output, then the production function in terms of inputs
can be written as:-

Q = f (x1, x2)

Q = f(x1, x2,……….xn) for n inputs

v) The Cost Function :- C = f(x1, x2) if a firm produces 2 commodities X1 &
X2 with x1, x2 as the levels of output of the 2 commodities then the cost function C
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can be written as function of level of output x1 + x2.

C = f (x1 , x2)

C = f (x1, x2……..xn) for n commodities

Self-Assessment - I

1. What do you mean by Supply function and the demand function.

________________________________________________________

________________________________________________________

________________________________________________________

________________________________________________________

2. Explain the meaning of utility function and the production function.

________________________________________________________

________________________________________________________

________________________________________________________

________________________________________________________

6.4 THE PARTIAL DERIVATIVES :-

Definition:- The partial derivatives of U = f (x, y) with respect to x at the point (x,
y) is defined as

  
 

xδ
yxfyxδxf

δ
Lt ),(),(

0



If it exists finitely, Thus, while finding partial derivatives of U= f (x, y) with respect
to x at (x, y), we assume that y remains fixed and the change in the function is due

to change in x (from x to x+  xδ )

The partial derivative of U = f(x, y) w. r. t. x at (x, y) is denoted by 
 

x
U

  f(x)

of fx.

Similarly, the partial derivative of U = f (x, y) w. r. t. y at (x, y) is defined
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as:-
 

0yδ
Lt

 
 

yδ
yxfyδyxf ),(),( 

,

If it exists finitely and is, defined by

 
 

fyoryxfor
y
U

y ),(



Remarks :- (i) The concept of partial derivatives is applicable to functions of more
than one variable, i.e. function of two or more variables.

6.4.1 Second order partial derivatives

The partial derivatives of the first order partial derivatives are known as the
second order partial derivatives e. g.
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2

2

2

forforUor
x
for

x
U

xx
U

xxxx



















 
222

2

2

2

forforUor
y
for

y
U

yy
U

yyyy




















 
1221

22

Uorforforfor
Y
U

y
U

xy
xyxy 





















 
2121

22

Uorforfor
dd
for

y
U

x
U

xy
xyyx





















Examples :- Find the first order and second order partial derivatives, 3x2 y2 + x5 +
3y2.

Solution :-

U = 3x2 y2 + x5 + 3y2

f (x) = 
 

x
U

  = 6xy2 + 5x4
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f (y) = 
 

x
U

  = 6x2y + 6y

 

 
32

22

2

2

206

56

xy

xxy
x

x
U

xx
Ufxx





























 

 

66

66

2

2

2

2





























x

yyx
y

y
U

yy
Uf yy

 

 
xy

xxy
y

x
U

yxy
Ufxy

12

56

.

42

2


























 

 
xy

yyx
x

y
U

x
Uf

yx
xy

12

66

.

2

2





























From above we find

fxy = fyx
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Example : Find the first order partial derivative

 

8
2 2




yx
xU

Sol.

 

2

22

)8(

)8(2)2()8(

















yx

yx
x

xx
x

yx

x
U

 
2

2

)8(
)1(2)4()8(








yx
xxyx

x
U

 
2

22

)8(
23244





yx

xxxyx

 
2)8(

)162(2





yx
yxx

 
12 )8(2 






 yx

y
x

y
U

 )1()8()1(2 22  yxx

 
2

2

)8(
2




yx
x

Self-Assessment - II

1. Find the second order partial derivative of ex2 - y2.

2. Show that :

 

x
u




2  + 
 

x
u


2

y2  = 4 (a2 + b2) - 4
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6.4.2. Signs of Partial Derivatives:-

A function of two variables yields two first order partial derivatives, fx shows
the rate of change of the function U = f(x,y) w. r. t. x, assuming y as a constant and
fy, shows the rate of change of the function.

U = f (x, y) w. r. t. y assuming x as a constant fxx shows whether the function
is increasing or decreasing or constant rate, when x varies and y remains constant.

1) fx > 0 means that the function increases as x increase, y remaining constant ;
fx<0 means that the function decreases as x increases y being held constant.

2) fxx>0 means that the rate of change of the function increases as x increases
y being held constant, fxx<0 means that the function changes at decreasing

rate. Similarly we can interpret the signs of fy & fyy.

3) fxy = fyx<0 means both that fx decreases as y increases & fy decreases as x
increases.

4) fxy = fyx >0, means that fx increases as y increases and fy increases as x
increases.

5) fxy = fyx = 0 means that there is no interaction between the variables.

Example :- A demand function is given by

Q = 5y + 4y3 - 10p2 - 80p-5, y>0, p>0

Where q is the quantity demanded, y is income and p is the price

a)  Find the slope of demand curve.

b)  Is the commodity normal or inferior.

c)  Is the reaction of demand to price independent of the level of income.

Solution :- We have

q = 5y + 4y2 - 10 p2 - 80 p-5

 
 

62 40030 

 ppfp

p
q
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 Slope of demand curve is

fp = -30p2 - 400 p-6

b) If the rate of change of q w. r. t. t  increases as y increases, the commodity
will be normal, thus.

 
 

2125 yfy
y
q





Since y is positive, therefore fy>0. Hence the commodity is a normal good.

c) fpy = fyp  = 0

When cross partial derivatives are zero, then the reaction demanded to price
is independent of the level of income i.e. it neither increases nor decreases as y
increases. Also fy neither increases not decrease thus, the rate of change of q w. r.t.
price is not independent of income level. Derivative of fp w.r.t.y is zero and derivative
of fy w. r. t. p is also zero. At any particular level of price, the responsiveness of
demand to price does not depend upon income level. The level of income will be
high or low, the value of fp will remain the same. In such cases the value of the
function will be the sum of separate effects of the independent variables. Hence our
answer to (c) part is yes.

Example:- For the Cobb-Douglas production function U = A  αα yx 1.  find the
marginal products of labour and capital where x is labour and y is capital. Also
show that

 
 

U
y
Uy

x
Ux 






 .

Solution :   αα yxAU  1

MPL = Marginal product of labour

  αα yAx
x

U
x

U
x












 1)()(

 11 ..  ααα xxyA
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α

α

y
x
xαA  1..

  

U
x
α

yxA
x
α αα



 1.

MPk = Marginal product of capital

  αα vxA
y

U
xy







 1..)(

 αα yαxA  )1(.

 

y
yxαA α


1)1(

  αα yxA
y
α 

 1.1

 

y
Uα)1( 



Hence,  
 








 













y
Uαy

x
uαx

x
Uy

x
Ux )1(

 =    uαuα )1( 

 
 

...
)1(

SHRu
ααu




6.5 TOTAL DIFFERENTIAL AND TOTAL DERIVATIVE:-

Definition:- Total differential : If U = f (x , y) is a function of two independent
variables, x and y, then total differential of U to be denoted by du, is a linear
approximation of the change in u or f (x, y) when there is a small change in both x
and y and we write it as:-
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dyfdxfdy
y
Udx

x
Uu yx .










We shall explain this concept with the help of an example of wheat output (u), land
x and labour y, our problem is to find out as to what will be the change in wheat
output (u) when there is a small change in both land (x) and labour (y). We know

that 
 

x
U

  denotes the change in (u) due to small unit change in x and keeping y

constant. Thus if land x changes by  x, keeping y constant, change in u due to a
small unit.

Change in x = 
 












x
U

 ( x) (1)

Similarly, if there is a change of  y in land y, when the change in u due to a change
of  y in y keeping x constant.

= (Change in U due to small unit change in y) × (change in y)

=   
 












x
U

 ( y) (2)

 as a first approximation, we can think that the change in U due to a small change
of  x in x and a small change of  y in y will be
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i.e. Total change in U [due to small change in x & y] = [Change in U due to (total)
change in x (keeping y constant) & change in U due to change in y (Keeping x
constant) i.e.  U = [Change in U due to a unit of change in x) (total change in x) +
(change in U due to a unit change in y) (total change in y).
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6.6 DEFINITION:- TOTAL DERIVATIVE

a) Let U = f(x, y) be function of two independent variables in x and y, then
total change in u w. r. t. one of the variables (say x) when there is a change in both

x and y, is called the total derivative of u w. r. t. x and is denoted by  
 

xd
ud

, similarly,,

the total change u w. r. t. y when there is change in both x and y is called the total

derivative of u w. r. t. y and is written as 
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6.6.1 Illustrative examples of total differential

i)  U = x3 + 3x2 y + 6xy2 + 2y3

Total differential  
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ii) U = xy3  -   yx3
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iv) Find d if   4
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APL  = Average product of labour, APK = Average Product of Capital

v) A production function is given by q = 3L2/3 K1/3 where 60 - 2 L - K = 0, q
= output, L = Labour, K = Capital. Find the least cost combination of labour and
capital.
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Sol. Given production function

q = 3 L2/3  K1/3 (1)

Where 60 - 2 L - K = 0 (2)

From (1) & (2) we have

Z = 3 L2/3  K1/3 +   (60 - 2 L - K) (3)
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From (4) and (5), 2L-1/3  K1/3  = 2 λ , L2/3    K-2/3  =   λ
Dividing, we get
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Substitute K = L, in (6), 60-2L - L = 0, 3L = 60 L = 20  K = 20
When L = 20, K = 20, Then the first condition of tangency is satisfied

For Second condition  
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     output is maximum, when L = 20, K = 20

Examples of total derivative

i) If U = f (x, y) and y = f(x) = 4x-7, find the total derivative 
 

x
u


  of the

function.
U = x3 + 3x2 y +  6 xy2 + 2 y3

Sol : If U = f (x, y) and y = f (x), then the total derivative 
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Example :- U = (x2 +  y2)  yx   and y = 2 - 3x. find the total derivative (du/dx)

Sol. y = 2 - 3x
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Example:- Find the total derivative  
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x = a + b t y = c  + d t

Sol. U = f (x, y ; t, x = a + b t , y = c + d t
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ii) If U = x2 - 8xy - y3, x = 3t, y = 1 - t

We know  
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-3 (2x - 8y) + 8x + 3y2

=   6x    -   24y   +  8x  +  3y2

=   14x  -  24y  +  3y2

Self-Assessment - III

1. If z = 1
x y
x



, find the total derivative.

2. If z = 
9 7
2 5

x y
x y

  and y = 3x - 4, find the total derivative.

6.6 SUMMARY

We conclude this lesson by summarizing what we have covered in it

i) Partial derivative:- Finding the first order partial derivative of a function U
= f(x, y) w. r. t. x we assume y remains fixed and the change in the function is due

to change in x and denote it by 
 

x
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 or f(x), similarly if x remains fixed to the

change in the function is due to change in y, then 
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ii) Second order partial derivatives
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iv) Total derivatives
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v) Total differentials
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vi) Economic examples / application of partial derivatives, total derivatives and
total differential.

6.7 LESSON END EXERCISE

Q.1. Find the total differential of the following functions

i) 
 

yx
yx


 22

ii) 
 

22

1
yx 

Q.2. Find du, when (i)  
22 32 yxeu 

(ii)  )3( 22 yxLog 

Q.3. Find dq, if the production function be q = a L3/4,  C3/4

Q.4. Find the total differential of

U = x3 + 3x2y + 6xy2 + 2y3
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M.A. Economics Lesson No. 7
C.No. 103 Semester - 1st Unit II

MAXIMA AND MINIMA - CONSTRAINED AND
UNCONSTRAINED, ECONOMIC APPLICATION

STRUCTURE

7.1 Introduction

7.2 Objectives

7.3 Function of two variables

7.3.1 Convexity of Curves

7.3.2 Maxima and Minima of Functions of one variable

7.3.3 Maxima and Minima - An Alternative Approach

7.4 Constrained Optimization with Logrange Multiplier

7.5 Application of Minima and Maxima in Economic Theory.

7.6 Summary

7.7 Lesson End Exercise

7.8 Suggested Readings

7.1 INTRODUCTION

When we first introduced the term equilibrium in the first unit, we made a broad
distinction between goal and non goal equilibrium. In the latter type, exemplified by
our study of market and national-income models, the interplay of certain opposing
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forces in the model-e.g., the forces of demand and supply in the market models
and the forces of leakages and injections in the income models- dictates an equilibrium
state, if any, in which these opposing forces are just balanced against each other,
thus obviating any further tendency to change. The attainment of this type of equilibrium
is the outcome of the impersonal balancing of these forces and does not require
conscious effort on the part of anyone to accomplish a specified goal. True, the
consuming households behind the forces of demand and the firms behind the forces
of supply are each striving for an optimal position under the given circumstances,
but as far as the market itself is concerned, no one is aiming at any particular equilibrium
price or equilibrium quantity. Similarly, in national income determination, the impersonal
balancing of leakages and injections is what brings about an equilibrium state, and
no conscious effort at reaching any particular goal needs to be involved at all.

In the present lesson, however, our attention will be turned to the study of
goal equilibrium, in which the equilibrium state is defined as the optimum position
for a given economic unit (a household, a business firm, or even an entire economy)
and in which the said economic unit will be definitely striving for attainment of that
equilibrium. As a result, in this context-but only in this context-our earlier warning
that equilibrium does not imply desirability will become irrelevant and immaterial.

7.2 OBJECTIVES

After reading this lesson you should be able to understand

- Increasing and decreasing functions

- Convexity of curves

- Maxima and minima of functions without constraints.

- Maxima and minima of functions with constraints.

- Economic application.

7.3 INCREASING AND DECREASING FUNCTIONS

Let us assume x is output and y is average cost. Furthermore, let us assume that the
relation between x and y is y = 40-6x+x2. This can be thought of as an average cost
function. Now, the question is, does y (average cost) increase decrease or stay
stationary as x (output) increase. Let us first draw a graph (figure 7.1) of this cost
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function, which shows that as

Av
er

ag
e 

C
os

t

OutputFig. 7.1

x (output) increases, y (average cost) decreases, reaches a minimum, and then
starts to increase. Graphing the first part of the function, we have figure (7.2). A
function (curve) that is downward-sloping like this is called a decreasing function,
that is, the value of the function y decreases as x increases. We shall show this
mathematically, selecting a point A1 on the curve and drawing a tangent to the curve.
The slope of this tangent is given by tan  .

Fig. 7.2

We also know that the derivative of the function at the point A1, is equal to the
slope of the curve at that point. Thus

 
 tax

dx
dy n

But we see graphically that   > 900. We know from trigonometry that

tan   = tan (1800-  ') = tan  '

For example, if     = 135, then   ' = 45. Thus,
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tan 1350 = tan (1800-450) = - tan450 = 1 [  tan 450 = 1]

and the derivative will be equal to

     
 

01135tantan
dx
dy 0 

In general, when   > 900, then  
 

0
dx
dy



As a conclusion, we may say that y = f(x) is a decreasing function at the
point x when f (x) <0. By a similar argument we may say that y =f(x) is an increasing
function at the point x when f (x) >0

Example : Using our average cost function, let us find whether it is a increasing
or decreasing function at the values x = 4 and x = 2.

a) When x = 4,  y = 40-6x + x2
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b) When x = 2
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Thus, at x = 2, it is decreasing (cost) function. This is interpreted as follow.
When x increase by a small amount, y will decrease by 2 units, at the point x = 2.

In case of (a), at x = 4, it is an increasing function. When f' (x) = 0, the
slope of the curve is horizontal. That is, tan   = tan 00=0. At this point the curve is
stationary.

Example 2 :

y = x2-4x



140

 
 

4x2
dx
dy



When x = -1, then f' (x) = -6 < 0. Thus, y = f(x) is a decreasing function at
the point where x = -1

When x = 2, then f' (x) = 0 and then y = f(x) is a stationary function at x=2.

When x=3, then f' (x)=6-4= 2>0. Thus, y =f(x) is an increasing function at
this point.

7.3.1 Convexity of Curves

Consider a car that starts from a stand still position and reaches a certain speed
after a certain amount of time. Let y (meters) be the distance the car has travelled
and t (seconds) be time. We have the following relationship.

y = t2 …….. (1)

Thus, when t = 1 second, then y = 1 meter; t = 3 seconds, then y = 9 meters, and
so forth.

Let us differentiate with respect to t. Then,

 
 

t2
dx
dy

   ……(2)

dy/dt gives the velocity at time t. For example, when t = 2, i.e. 2 seconds
after the car has started, dy/dt = 4 meters / second, and so forth.

Let us graph equation (1) dy/dt = 2t shows the slope of this curve at various
points. For example, at the point (3, 9) we have

 
63x2tan

dx
dy 

   = 800 30' (approximately)

Now, let us differentiate (2) once more
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2

dt
yd
2

2

    ….(3)

Fig. 7.3

This gives us the change in velocity per second, i.e., acceleration. We have 2 meters
per second, as acceleration. This means velocity increases every second by 2 meters
per second. Summarizing this in table form, we have

TABLE 1

t(seconds) 0 1 2 3 4

y(meters) 0 1 4 9 16

dy/dt (meters/second) 0 2 4 6 8

d2y/dt2 (meters/second) 2 2 2 2 2

We are interested in the second derivative d2y/dt2= f''(t). This shows the rate of
change. In our present case f" (t) = 2ml second2 and it is constant, that is, the rate
of change is the same. Thus, the velocity is increasing at a rate of 2m/ sec every
second whether it is o ne second or four seconds after the start.

Using this discussion, we may define several terms. The function y = f(x) in
figure 4(a) is our present case and we shall say y is increasing at an increasing rate.
This is shown by
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The curve y=f(x) lies above the tangent, and we say the curve is concave
upward or convex downward.

o

o

o

Fig. 7.4

The implication of f"(x) > 0 is that f' (x) = tan    is increasing at the point of tangent. For
f(x)= tan   to increase,   needs to increase towards 900. This can happen only if the
curve gets steeper. Thus, the curve will be convex downwards as in figure 4(a)

Figure 4(b) shows where the rate of increase of y is zero. That is,

 
 

0)x("f
dx

yd
2

2



For example, if
 

0
dt

yd,2
dt
dy,t2y 2

2



There is no curvature of the curve. The curve is a straight line.
Figure 4(c) shows where the rate of increase of y is decreasing. This is

written

 
 

0)x("f
dt

yd
2

2


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To summarize, the condition for convex downward is f"(x)> 0, straight line,
f" (x) = 0; and convex upwards, f"(x) < 0. In the special case where we have two
curves tangent to each other, we can draw a tangent going through the point P
where they touch. Then the curve APB will be above and the curve CPD will be
below the tangent line.

Fig. 7.5
O

If we look upon CPB as a curve and imagine the point P moving along the curve,
then, when P is between C and D of the curve; f" <0 because CD is convex upward.
But, from point P to B, since APB is convex downward, f" >0. Thus, at point P, f"
changes signs and at that point, f"0. This point P is called the point of inflexion.
Example 1

y = x2-4x, f = 2x-4, f" = 2>0
Thus convex downward

Example 2

 
 

6x6"f,x6x2f,x3x
2
1y 2324 

The point of inflexion is where f"(x) = 0.
Thus, let

6x2-6 = 0, x2-1 = 0, (x+1) (x-1) = 0

 x = 1, x = -1
Thus, the point of inflexion will be at
x = 1 and x = -1, For x = 1, we have
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24 x3x
2
1y 

 
5.2

2
53

2
1



and one of the points of inflexion is at (1, -2.5)
7.3.2 Maxima and Minima of functions of one Variable
i) Maxima and Minima of functions
Referring to figure 7.6, we see that points on either side of B1 in a small neighbourhood
are lower than B1. Then, the function y = f(x) has a maximum value at the point B1.
In a similar value we define B2 as the point where the function y = f(x) has a minimum
value. The maximum and minimum values together are called the extreme values of
the function. As can be seen, as the domain of x is enlarged, other maximum and
minimum values may occur at different points. To emphasize that B1 and B2 may not
be the only extreme values, we sometimes say relative maximum or minimum values
or relative extreme values.

Fig. 7.6

Symbolically, this may be shown as follows:

Let   > 0 be a small number, Then,

f(x1-  ) <f(x1)>f(x1+  ) …..Maximum
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f(x2-  ) <f(x2)>f(x2+  ) …..Minimum

ii) Necessary and sufficient conditions for an extreme value
Assume we have two functions as shown in figures 7.7(a) and 7.7(b). From our
previous discussion we know that when dy/dx = 0, the tangent to the curve at that
point will be parallel to the x-axis. Let A and

Fig. 7.7

B be two such point, then the tangents are parallel to the x-axis. As is evident from
the graph, point A is a maximum and point B a minimum. In other words, the necessary
conditions for a certain point such as A or B to be an extreme value is that dy/dx =
0 at that point.

From our discussion of the convexity of curves, however, we may have a
situation such as in figure 7.7(c) where the tangent going through the point of inflexion
is parallel to the x-axis. Thus, dy/dk=0 is a necessary condition for y =f(x) to have
an extreme value but it is not a necessary and sufficient condition. Therefore, two
questions arise: (1) how may we be certain that we do not have a point of inflexion
such as 7.7(c) and (2) how do tell whether it is maximum or minimum? For this we
can use our knowledge of the curvature of curves. Looking at figure 7.8 below we
see that, for the left side of the curve, we have an increasing curve, that is, dy/
dx>0. But we also see that it is increasing at a decreasing rate. That is, d2y/dx2<0,
and thus the slope dy/dx must gradually approach zero.
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Fig. 7.8

Looking on the right side of the curve, we see it is a decreasing curve. Thus dy/
dx<0. But we see it is decreasing at an increasing rate. Since dy/dx<0 this mean
that d2y/dx2<0. Putting the two sides together, the curvature of this curve is shown
by d2y/dx2<0. So, when we have a point that satisfies.

 
 

0
dt

yd,0
dx
dy

2

2



We must have a maximum, dy/dx = 0 and d2y/dx2<0 are the necessary and
sufficient conditions for the occurrence of a maximum. Note that d2y/dx2<0 alone
tells us the curvature of the curve. Only when we have the necessary condition dy/
dx<0 does d2y/dx2<0 have meaning as a sufficient condition with respect to the
occurrence of a maximum.

In a similar manner, we find that

 
 

0
dt

yd,0
dx
dy

2

2



are the necessary and sufficient conditions for a minimum.

As was just discussed, the necessary and sufficient conditions need to be considered
together. But, in many cases in economics, the  d2y/dx2>

<o needs to be discussed
for its implications. We shall call this, and its corresponding part in functions of
more than two variables, the sufficient conditions with the understanding of the
preceding discussion.
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Example: Our cost function was

y = 40-6x+x2

Then the necessary condition for this to have an extreme value is

 
 

x26
dx
dy



 
0

dx
dy 

 0x26 

x = 3

Now, is the value of y a maximum or minimum at x = 3?

For this we determine the second derivative to find the curvature of the curve. This
is

 
02

dt
yd
2

2



Thus, the curve is convex downwards and the function has a minimum value at
x = 3, that is, at x = 3, we have the minimum average cost which is

y = 40-6x + x2 = 40-6x3 + 32

= 40-18 + 9

= 31

7.3.3 Maximum and Minima - An Alternative Approach

An alternative way is to consider the change of signs of f(x)

Maximum : f'(x)=0, f'(x) changes from + to -

Minimum : f'(x)=0, f'(x) changes from - to +

A heuristic explanation of this is obtained by studying figure 7.6
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Example 1. Find the maximum and minimum value of

2x3-15x2+36x+20

Sol :   Let y = 2x3-15x2+36x+20
 

36x30x6
dx
dy 2 

  )6x5x(6 2 

For stationery value,  
 

0
dx
dy



  0)6x5x(6 2 

 0)2x)(3x(6 

Thus, stationary values occur at x=2 and x=3

Now,  
 

30x12
dx

yd
2

2



For 
 

063024
dx

yd
2

2



At 
 

0
dx

yd,0
dx
dy,2x 2

2

   Hence y is maximum and maximum

value of y is

y = 2 (2)3 - 15 (2)2 + 36(2) + 20

= 2 x 8 - 15 x 4 + 72 + 20

= 16 - 60 + 72 + 20 = 48

At  
 

0
dx

yd,0
dx
dy,3x 2

2

  Hence y is minimum and value is

y = 2 (3)3 - 15 (3)2 + 36(3) + 20
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= 54 - 135 + 108 + 20

= 47

Example: Show that the maximum value of the function y = x3-27x+108 is 108
more than the minimum value

Sol :  Let y = x3-27x+108

 
 

27x3
dx
dy 2 

 
0

dx
dy 

 027x3 2 

x2 = 9

 3x 

Now,
 

x6
dx

yd
2

2



For  3x 

 
,018

dx
yd
2

2



At   
 

0
dx

yd,0
dx
dy,3x 2

2

   Hence at x = 3, y is minimum and value is

y = x3 - 27x + 108

= 27 - 27(3) + 108

= 27 - 81 + 108

= 54

At 
 

0
dx

yd,0
dx
dy,3x 2

2

   Hence at x=-3, y is maximum and max. value is
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y = x2 - 27x + 108

= (-3)3 - 27(-3) + 108

= -27 + 81 + 108

= 162

 Max. value (162) is 108 more than min. value (54)

Self-Assessment - I

1. Find the maximum and minimum value of (x - 2)6 (x - 3)5

________________________________________________________

________________________________________________________

________________________________________________________

________________________________________________________

2. Show that x3 - 3x2 + 3x + 7 has no maximum and no minimum value

________________________________________________________

________________________________________________________

________________________________________________________

________________________________________________________

7.4   CONSTRAINED OPTIMIZATION WITH LAGRANGE MULTIPLIER

Differential calculus is also used to maximize or minimize a function subject to constraint
given a function f (x, y) subject to a constraint I (x, y) = k (constant), a new function
F can be formed (1) setting the constraint equal to zero (2) multiplying it by   (the
Lagrange multiplier, and (3) adding the product to the original equation

F (x, y,  ) = f (x, y) +    [k-g (x, y)]

Here F (x, y,  ) is the Lagrangian function, f (x, y) is the original or objective
function, and g (x, y) is the constraint. Since the constraint is always set equal to
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zero, the product  [k-g(x,y)] also equals zero and the addition of the term does
not change the value of the objective function. Critical values x0, y0 and   0, at
which the function is optimized, are found by taking the partial derivatives of F with
respect to all three independent variables, setting them equal to zero, and solving
simultaneously.

Fx (x, y,  ) = 0; Fy (x, y,  ) = 0; F    (x, y,  ) = 0

Second order conditions differ from those of unconstrained optimization and are
treated as under. The second order conditions can now be expressed in terms of a

bordered Hessian  H

 

yyyxy

xyxxx

yx

FFg
FFg
gg0

H 

which is simply, the plain Hessain  
 

yyyx

xyxx

FF
FF

 bordered by the first derivative

of the constraint with zero on the principle diagonal. The order of a bordered principle
minor is determined by the order of the principle minor being bordered.

Hence  H  above represents a second bordered principal minor  2H , because

the principal minor being bordered is 2x2.

For a function in n variables f (x1, x2.., xn) subject to g (x1, x2.., xn)

 

 

nn2n1nn

n222212

n112111

n21

nn1

nnn2n1n

2n22221

1n11211

FFFg
FFFg

FFFg
ggg0

or

0ggg
gFFF

gFFF
gFFF

H 

where  H   =  nH , because of the nxn principle minor being bordered.
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If all the principle minors are negative i.e. if  2H ,  3H  --  4H  <0, the

bordered definite Hessian always satisfy  the sufficient condition for a relative minimum.
If the principle minors alternate consistently in sign from positive to negative

i.e., if   
2H   > 0,  

3H  < 0,  
4H  > 0, etc. the bordered Hessian is negative

definite and a negative definite Hessian always meets the sufficient condition for a
relative maximum.
Example : Optimize the function, 2 = 4x2 + 3xy + 6y2 subject to the constraint
x + y = 56
Solution: Setting the constraint equal to zero

56 - x - y = 0 ---- (1)

Multiply this difference by   and add the product of the two to the objective functions
in order to form the Lagrangian function Z

Z = 4x2 + 3xy + 6y2 +   (56-x-y) ---- (2)

Zx = 8x + 3y -    = 0 ---- (3)

Zy = 3x + 12y -     = 0 ---- (4)

Z     = 56 - x - y = 0 ---- (5)

Subtracting (4) from (3), to eliminate   , gives

5x - 9y   = 0

5x = 9y

x =     , y = 1.8y

Substitute in (5)  
 

5
9

56 - x - y = 0

56 - 1.8y -y = 0

2.8y = 56

y = 20
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we can also find x = 36

Substitute the critical values in (2)

Z = 4(36)2 + 3(36) (20) + 6(20)2 + 348 (56-36-20)

   = 4(1296) + 3 (720) + 6 (400) + 348 (0)

   = 9744

Also, we can find

Zxx = 8, Zyy = 12, Zxy = Zyx = 3

From the constraint, x + y = 56, we get gx = 1 and gy = 1. Thus,

 

011
1123
138

H 

 )123(1)1(3)1(8HH2 

= -8 + 3 - 9

= -14

with  H0H2    is positive definite, which means that Z is at a minimum

Example : The generalized Cobb-Douglas production function q = K0.4 L0.5, given a
budget constraint of Rs. 108 when PK = 3, PL = 4

Solution : Q = (K0.4) (L0.5)

QK = 0.4(k)-0.6, L0.5; QL = 0.5, K0.4, L-0.5

QKK = (0.4) (-0.6) k1.6, L0.5; QLL = (0.5) (-0.5) K0.4, L-1.5

QKK = -0.24 K1.6, L0.5  ; QLL = -0.25, K0.4, L-1.5

Also QKL = QLK = (0.4) (0.5) K-0.6, L-0.5

= 0.20 K-0.6, L-0.5
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and from the constraint 3 k + 4 L = 108

gK = 3, gL = 4

 

043
4LK25LK2.0
3LK20.0LK24.0

H 5.14.05.06.0

5.06.05.06.1











Starting with  2H  and expanding along the third row

 

)LK6.0LK96.0(4

)LK75.0LK8.0(3H
5.06.05.06.1

5.14.05.06.0









= 2.25K0.4   L-1.5    + 4.8K-0.6   L-0.5  + 3.84K-1.6  L0.5

 
 

0
K

L84.3
LK
8.4

L
K25.2

6.1

5.0

5.06.05.1

4.0



with  H;0H2   is negative definite and Q is maximized

Examples of constrained maxima and minima

Example : Find the extremum (if any) of the function by Lagranges method

U = f (x, y) = 12xy-x2-3y2 subject to the constraint x + y = 16

Solution : The given objective function is

U = f (x, y) = 12xy - x2 - 3y2 --- (1)

and the constraint is   (x, y) = x + y - 16 --- (2)

  The Lagrange's function is

F = F (x, y;  ) = f (x, y) -     (x, y) --- (3)

= 12xy - x2 - 3y2 -   (x+y-16) --- (4)

a) First order conditions
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













 0)16yx(F
0y6x12F
0x2y12F

y

x

 or 
)7(16yx
)6(y6x12
)5(x2y12





from (5) and (6)

12y - 2x = 12x - 6y

or 14x = 18y

or 7x = 9y or y = 7/9x --- (8)

Putting this value of y in (7), we get

 
 

16x
9
7x 

    
 

9xor16x
9

16


from (8), y = (7)

From (5), 12(7) - 2(9) =    ;    = 66

Hence, there is one critical point (x*, y*) = (9,7) and   = 66

b) Second order conditions (SOC) d2F 
 




 0 for max/min

since   (x, y) = x + y - 16,   x = 1,   y = 1

Fxx = -2, Fyy = -6, fxy = 12 = fyx

Applying bordered Hessian Determinant (BHD) method

At the C.P. (9, 7),   1 = 1,  2 =1, F111 = -2, F12 = 12 = F21 F22 = -6

 

 










































6121

1221
110

FF
FF

0
Hor

22212

12111

21

23
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= 0 (   ) -1 [(-6-12) + 1(12+2)]

= -1 (-18) + 1(14)

= 18 + 14

= 32 > 0

which  that the function U = f (x, y) = 12xy - x2 - 3y2 subject to the constraint

  (x,y) = x + y - 16 = 0 is maximum at the C.P (9, 7) and the constrained maximum
value = Max f = f (9, 7)   = 12(9) (7) - (9)2 - 3(7)2

     = 756 - 81 - 147

     = 756 - 228 = 528

Self-Assessment - II

1. Find whether the function is relative minima or maxima. If

a) z = 3x2 - xy + 2y2 - 4x - 7y + 12

b) z = 2y3 - x3 + 147x - 54y + 12

7.5 APPLICATION OF MINIMA AND MAXIMA IN ECONOMIC THEORY

Maxima and Minima is a potent device with the students of economics confronting
myriads of problems in economic theory. It is a common experience that a rational
consumer thinks always in terms of maximum utility, whereas a prudent producer
strives at maximizing profits and choosing the least cost combination. As explained
in the previous sub-unit, the technique of determining maximum and minimum value
of a function of one variable. Even this limited knowledge will suffice to illustrate
the use of this technique in solving many economic problems.

1.a) Maximum Revenue

When the demand function takes the form P = K-aQ, then

TR = KQ - aQ2

This is a relation between TR and Q and TR will be at a maximum when the
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first and second-order conditions hold, i.e. when

d(TR)/dQ = 0

and d2(TR)/dQ2<0

when  
 

,0
dQ

)TR(d


K-2a Q = 0 or Q = K/2a

d2(TR)/dQ2 = -2a <0

Thus TR is maximum when Q = K/2a

1.(b) Maximum Revenue and Elasticity

The first order condition for a maximum is d (TR)/dQ =0 or MR=0, TR

remains unchanged as Q changes and ED=-1

In the above example TR is at a maximum when Q = K/2a

 

dp
dQ

Q
PED

 











a
1

Q
aQK

Since P = K-aQ and dQ / dP = -1/a

When Q = K/2a

 











a
1

a2/K
aKE

K
a2

D

 








a
1

a2/K
2/KK

 








a
1

a2/K
2/K
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= a(-1/a) = -1

2. Minimum Average Costs

If a firm's TC function is

TC = K+aQ+bQ2, where K, a and b are positive constants then

AC = TC/Q
 

bQa
Q
K 

Average costs are at a minimum when d (AC)/dQ=0 and d2 (AC)/dQ2>0
 

0b
Q
K

dQ
)AC(d 2 

i.e. 
 

b
KQ2 

Q =   b/K

Second order condition

 
 

0Qallfor0
Q
K2

dQ
)AC(d 3

2



Thus AC is at a minimum when Q=

3. Minimum Marginal Costs  b/K

If a firm's TC function is

TC = K + aQ - bQ2 + cQ3, where K, a, b, and c are positive

constant, then

d(TC)/dQ = a-2bQ + 3cQ2 = MC

MC is at a minimum when
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d(MC)/dQ = 0

and  d2(MC)/dQ2 >0

when d (MC)/dQ = 0

-2b+6c Q = 0

 
 

c3
b

c6
b2Q 

d(MC)2/dQ2 = 6c>0 c is positive

Thus MC is at a minimum when Q =b/3c

4.a) Profit Maximization

The conditions for a maximum derived can be used

Profit S = TR - TC

If TC = K+aQ+bQ2 and the demand function takes the form P = L-nQ,
where k, a, b, L and n are positive constants

TC = PxQ

= LQ -nQ2

Then

S = LQ-nQ2-K-aQ-bQ2

   = -(b+n) Q2+(L-a) Q-K

S is now a function of Q and takes a maximum when

dS/dQ = 0 and d2S/dQ2<0 when 
 

0
dQ
dS



-2(b+n) Q+L-a=0

 
 

)nb(2
aLQ


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d2S/dQ2 = -2(b+n)<0 since b and n are positive

Therefore profits are maximized when

Q=(L-a)/2 (b+n)

4.b) The Profit Maximization Conditions

S = TR-TC

and dS/dQ  
 

dQ
)TC(d

dQ
)TR(d


Since S, TR and TC are all functions of Q.

When dS/dQ = 0,

 
 

0
dQ

)TC(d
dQ

)TR(d 

or  MR-MC = 0

Consequently, the first-order condition for a maximum is MR=MC

We know that revenue is maximized when MR= 0, or ED=-1. A profit
maximizing firm will be in equilibrium when MR = MC and since MC must be
positive MR will take a positive value in equilibrium. Consequently, a profit maximizing
firm will be in equilibrium when -ED>1. When

 
 

0bemust
dQ

)MC(d
dQ

)MR(dor
dQ

)TC(d
dQ

)TR(d
2

2

2

2



Hence profits are maximized when MR=MC and d(MR)/dQ-d(MC)/dQ is negative.
Figure (7.9) shows that profits are maximized at M. At M, MC = MR,



161

Fig. 7.9

MR is downwards sloping, i.e. the slope of the tangent to the MR curve is
negative at every point, thus

d(MR)/dQ<0 at M

MC is upward sloping at M, thus

d(MR)/dQ>0

and
 

0
dQ

)MC(d
dQ

)MR(d 

In general, however, we require only that d(MR)/dQ-d(MC)/dQ<0, so that
d(MC)/dQ need not been positive.

5. Effect of Taxation on the output of a profit maximizing firm

Earlier in this unit, we saw that profits are maximized when

 
 

)nb(2
aLQ





given that TC = K+aQ+bQ2 and P=L-nQ. The levying of a lumpsum tax,
i.e. a tax which does not depend on output, on this firm will have no effect on the
equilibrium output. This tax will increase the value of the constant K in the TC
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function and consequently decrease profits by the amount of tax. However, the
equilibrium output will remain unchanged since the constant term disappears with
differentiation.

A tax which varies with output will affect the equilibrium output and profits.
If the government imposes a tax of t per unit of quantity produced then TC will
increase by tQ or S will decrease by tQ, i.e.

S = -(b+n) Q2 + (L-a) Q-K-tQ

   = -(b+n) Q2 + (L-a-t) Q-K

when dS/dQ = 0

 
 

0)taL(Q)nb(2
dQ
dS



Thus
 

)nb(2
taLQ






 
vearenbcesin,0)nb(2

dQ
Sd

2

2



Thus profits are maximized when

 

)nb(2
taLQ




 .  The optimum output falls as a result of the per unit tax: t is subtracted

from the numerator and has the effect of decreasing Q. A per unit subsidy would
have the opposite effect.

6. Maximization of Tax Revenue

A per unit tax on quantity produced causes a profit maximizing firm to cut
back production. Since total tax revenue T depends upon the tax rate t and the
output level Q, i.e. T = tQ, it is possible to find the tax rate which maximizes total
tax revenue from the point of view of the exchequer.

In the previous example, equilibrium quantity depended on the tax rate t,

i.e., Q = (L-a-t)/2 (b+n)
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T = tQ = t.  
 












)nb(2
taL

 

)nb(2
tatL 2






We now have T as a function of t, alternatively T could be expressed as a
function of Q.

Tax revenue T is maximized when dT/dt = 0 and d2T/dt2<0. When 
 

0
dt
dT



 
0

)nb(2
t2at

dt
dT 




i.e. L-a-2t = 0

L-a=2t

t =  
 

2
aL 

 
0

nb
1

)nb(2
2

dt
d

2

T2









Thus T is maximized when t=(L-a)/2

When t = (L-a)/2

 
 

)nb(2
2/)aL(aLQ






     
 

)nb(4
aLa2L2






     
 

)nb(4
aL





T= tQ, thus



164

 

















 


)nb(4

aL
2

aLT

   
 

)nb(8
)aL( 2






7. The supply function and a per unit tax

Consider an industry with the following demand and supply functions

P = K-  QD

and P =-K1+  QS

where K, K1,  and   are positive constants if the government imposes a
tax of t per unit of quantity produced and P is the market price to consumers, then
the effective price for producers is (P-t). Therefore, the supply function which includes
the tax is P-t = -K1+   Qs

or P = -K1+   Qs+t

At equilibrium, QS = QD, so

  tQKQK s1 

 





tKKQ 1

Equilibrium Q is reduced as a result of the tax. To find the tax rate which
maximizes total tax revenue T one can express T as a function of t. Alternatively T
can be expressed as a function of Q. At equilibrium

t = K+K1 - (  +  )Q

T = t Q

Thus

T/Q = K+K1 - (  +  )Q

 T = KQ + K1 Q- (  +  )Q2
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T is at a maximum when DT/dQ =0 and d2T/dQ2 < 0.

When dT/dQ = 0

 
 

Q)(2KK
dQ
dT

1 

 0Q)(2KK 1 

i.e.
 

)(2
KKQ 1






 
0)(2

dQ
Td

2

2

  veare

Thus, T is maximized when

Q = (K+K1)/2 (  +  )

Once Q is known, t and T can be found by substitution

The conditions for a maximum or minimum discussed above apply only to

continuous and smooth, i.e. without sharp bends. Most of the functions dealth with

in this unit are quadratics so that the relative maximum or minimum of any of these

functions is also the absolute maximum or minimum. With functions of degree 3 the

relative maximum or minimum will not be the absolute maximum or minimum.

CUBIC FUNCTIONS

Y = ax + bx2 + cx3

where c>0; thus

dy/dx = a+2bx+3cx2

This function will have a maximum and minimum when

a + 2bx + 3cx2 = 0

Assuming real roots, the values of x which satisfy this equation will only
provide a relative maximum or minimum. There is no limit to the value of y in the
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upward or downward direction, i.e. no absolute maximum or minimum, since larger
positive values for x will keep increasing y and larger negative values will keep
decreasing y.

7.3.4 Numerical Exercises

1. Example: If 
 

1
4q

121P 


 . Find the output level at which total revenue is

maximum also find maximum revenue.

Sol.
 

1
4q

121P 




 
q

4q
xq121R 




 
1

)4q(
484

dQ
dR

2 


 
32

2

)4q(
968

dq
Rd






For stationary values,  
 

0
dq
dR 

 
01

)4q(
484

2





 2)4q(484 

22 = q+4

q = 18

when q = 18,  
 

veis
dq

Rd
2

2



 R is maximum at q = 18 and maximum revenue is

 
18

22
18x121R 
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22
]18121[18 



 
81

22
99x18



2. Example: For a firm under perfect competition total cost function is given by

 
12q10q

10
9q

25
1 23  . If the price is Rs. 4 per unit, will the firm continue

production?

Sol. 
 

10q
5
9q

25
3

dq
dMC 2 




The first order condition for a firm under perfect competition for profit
maximization is MC = Price

i.e. 410q
5
9

25
q3 2

  

   06q
5
9

25
q3 2

  

   02q
5
3

25
q2

  

   050q15q2   

   
2

)50)(1(4)15(15q
2 

  

  
2

2515
2

20022515 



  

  10,5
2

515   

The second order condition for profit maximization is
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vebemust

dq
d

2

2




Now

For
 

veiswhich
5
3

5
95x

25
6dq/d,5q 22 

 
veiswhich

5
3

5
95x

25
6dq/d,10q 22 

  Profits are maximum when q = 10

At q = 10, Profit =  
 





  12q10q

10
9q

25
1Pq 23

 





  12)10(10)10(

10
9)10(

25
140 23

  12100904040 

= 40-[62] = -22

Maximum profit is a loss of Rs. 22. The fixed cost in this case is Rs. 12 and loss of
more than the fixed cost. If the firm discontinues production when p=4, its loss is
reduced to Rs. 12. Hence, the firm will produce nothing if p=4

Self-Assessment - III

1. Determine the minimum value of the cost function

C = q2 - 4q + 100

2. Given p = 200 - .02q and c = 100q + 30000. A tax of Rs. 50 per unit of
output is levied. Determine the quantity at which profit is maximum. Find
the maximum profit and price.

 
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7.6 SUMMARY AND CONCLUSION:

We conclude this lesson, by summarizing what we covered in it increasing and
decreasing function, maxima and minima without constraints and maxima and minimum
with constraints and application of minima and maxima in economic theory.

7.7 LESSON END EXERCISE

Q.1 State the conditions for the existence of maxima and minima of a function
y = f (x)

Q.2 What do you mean by constraint maximization and also write the necessary
and sufficient conditions of constrained optimization.

Q.3 Show that the demand curve

y = 80-5x-x2 is downward sloping and concave from below.

Q.4 A fixed plant is used to manufacture radio sets and, if x sets are turned out
per week, the total variable cost is

 






  2x

25
1x3Rs

Show that the average a variable cost increases steadily with output

Q.5 Show that the maximum value of 
 x

x
1






  occurs at x = 1/2

Q.6 Divide 24 into 2 parts, each part being positive real number, such that the
product is maximum.

Q.7 Find the maximum or minimum values of x2 .e1/x2

Q.8 Find the minimum value of the function U = x2+3y2+5z2 under the condition
2x+3y + 5z = 100
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Q.9 If U = x2y is a utility function find the equilibrium if budget constraint of x +
2y = 4

Q.10 Given the utility function U = (x+2) (y+1) and the budget constraint 2x+5y
= 51, find the optimal levels of x and y purchases by the consumer.

7.8 SUGGESTED READINGS

Aggarwal, C.S & R.C. Joshi: Mathematics for Students of Economics (New Academic
Publishing Co.)

Allen, R.G.D. ; Mathematical Analysis for Economists (Macmillan)

Anthony Martin & Norman Biggs; Mathematics for Economics and Finance-Methods
and Modeling

Black, J & J.F.Bradley :Essential Mathematics for Economists (John Willey & sons)

Dowling, Edward T: Introduction to Mathematical Economics (Tata Macgraw)

Henderson, James M & Richard E Quandt:Microeconomic Theory- A Mathematical
Approach (Mcgraw-Hill International Book Company)

Kandoi B: Mathematics for Business and Economics with Applications (Himalaya
Publishing House)

Yamane Taro: Mathematics for Economics-A Elementary Survey (Prentice Hall of
India Pvt. Ltd.).

*******
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M.A. Economics Lesson No. 8
C.No. 103 Semester - 1st Unit II

PRINCIPLE OF INTEGRATION INDEFINITE,
DEFINITE, ECONOMIC APPLICATION

STRUCTURE

8.1 Introduction

8.2 Objectives

8.3 Definition

8.3.1 Standard Forms of Integrals

8.3.2 Some more Standard Forms

8.4 Definite Integrals

8.5 Application of Minima and Maxima in Economic Theory.

8.6 Summary

8.7 Lesson End Exercise

8.8 Suggested Readings

8.1 INTRODUCTION

The first limiting process discussed was differentiation. From a geometrical stand-
point, differentiation was a study of the tangent of a curve. The second limiting
process we take up is integration. In geometrical terms will be a study of area
under a curve. Analytically speaking, however, integration and differentiation do
not depend on geometry. A geometrical interpretation is used only to help foster
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intuition.

8.2 OBJECTIVES

After reading this lesson, you would be able to understand.

-  Principles of integration

-  Definite Integrals

-  Indefinite integrals

-  Economic application

8.3 DEFINITION

 
  F(x)f(x)

dx
dIF 

Then f(x) is said to be integral of F(x) and is written as

  f(x) dxF(x)

[Real a integral of F f(x) dx us f(x)]

The sign    is the integral sign while the function f(x) is the integrand (i.e. the function
whose integral is to be found. The dx is added to indicate the variable with respect
to which the function f(x) is to be integrated. It also acts as an indication of where
the function to be integrated finishes.

Integration is thus the reverse of differentiation. Unlike differentiation, however,
there is no general rule for integration. Indeed a function need not have a integral.
However, most of the functions one finds in economics do have integrals. Knowledge
of the results of differentiation is essential if one is to derive the integral of a function.

8.3.1 Standard Form of Integrals

Suppose we wish to find the integral of X2; i.e. X2 is the derivative of a function and
we want to discover the function.
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  
   

2x323xdx33xd

thus,23x/dx2dxthatKnowWe

?dxXfXf
Xf2X















We know that

Consequently the function whose derivative is x2 equals x3/3, x3/3, is not
integral of x2 but an integral. Consider the function.

 
K

3
3X 

Where K is constant. The derivative of (x3/3)+K with respect to X is also
X2 . Hence the function whose derivative equals x2 is (x3/3)+K, where K is called
the constant of integration. Further information is required before a definite value
can be assigned to K.

The function whose derivative is X10 is given by

 
 

  K
11
11Xdx10Xf(x)

Where K is the constant of integration

It is possible to check by taking the derivative of (X11/11+K, with respect

to x, e.g. 
 

10X11
1011XK11

11X
dx
d 















Suppose we wish to find the integral of Xn, i.e.

  f(x)nX 

then
 

 



 K

1n
1nxdxnXf(x)

Because
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nX

1n
nX1nK

1n
Fnx

dx
d 


































When n= 4, then

 
 

 



 K5

5XK14
14Xdx4Xf(x)

When n = -2, then

 

 



 K

x
1K

12
12Xdx2Xf(x)

This works for all values of n except n = -1

1. INTEGRAL OF A CONSTANT

If the constant b is the derivative of a function, i.e. b = f(x), then.

 
 

  KKbxdx
dbecause

Kbxb.dxf(x)



 

2. INTEGRAL OF SUM :

The integral of   ,bXXX   where, , ,   and be are constant is
 

Kbx
1
1vx

1

1x
1
1x

dxbdxvxdxxdxx

















 
 

r

3. INTEGRAL OF MULTIPLE
The integral of a constant multiple of any integrand and is the constant times the
integral of that integrand and, e.g.

    






 







 

Kax
1

x

dxaxbdxaxb
1
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Where k is the constant of integration

8.3.2 Some Standard Forms :

1.  
 

  



  x1kxlog
dx
xkxlogdx

x
1

2.  
   



  alogaka

dx
dk

alog
axdxa xxx 

3.  
   



  xxxx eke

dx
dkedxe 

1. Example : Integrate the following w.r.t. x

 
 

x
xa 

=
 
 






  dx

x
xa

=
 
   






  xxlogadx1dx

x
1adx1

x
a

2.
 
 

dx
1x1x

1

=
 

 












dx

1x1x
1x1xx

1x1x
1

=  
 

 
 dx
1x1x

1x1x

=  
    dx1x1x
2
1

=
 

     dx1xdx1x[
2
1 1221
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=  
    








 





23
1x

23
1x

2
1 2323

=  
 

    2323 1x1x
2
1



A. INTEGRATION BY PARTIAL FRACTION

 
 

dx
16x

1
2

Let I =  
 
  




dx
4x()4x(

1dx
16x

1
2

Now let

 

 

   

 

 

   

    

    

4x
4xlog

8
1

4xlog4xlog
8
1

4xlog4xlog
8
1

4xlog
8
14xolg

8
1

dx
4x

1
8
1dx

4x
1

8
1

dx
4x8

1
)4x(8

1dx
16x

1
81Agetwe,4x
81Bgetwe,4xPut

4xB4xA1
4x

B
4x

A
16x

1

11

2

2















































 



log
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B. INTEGRATION BY SUBSTITUTION

Suppose, we have to evaluate,     dxx  if we put       dzzdxandzx '

and evaluate the resulting integral  
 
 






  dx

x
xa   the process of integration becomes

simple. Illustrating by taking a example.

Show that  
 
   

    






1n
1na

baxdxbax
1n

n

Let ax+b      = z differentiating both sides

a dx  = dz

   dx  = dxfa

Now,  
 
   

n
nn dzz

a
1

a
dzzdxbax

=
 

1nprovided
1n

z
a
1 1n






=  
   baxZ

1n
bax

a
1 1n



 



Evaluate    dx1x2x 

Let    z1x2 

Squaring both sides

 

 

dz.zdx
zdz2dx2d

z1x2 2





From above,  
 

2
1zx

2 

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


 dz.z.z

2
1zdx1x2x

2

=  
     dzz1z
2
1 22

=  
 









3
z

5
z

2
1 35

=
    








 



3

1x2
5

1x2
2
1 2325

=
  





 


3
1

5
1x2

2
1x2 23

=
  





 

15
53x6

2
1x2 23

=  
    

15
2x6

2
1x2 23 

=  
 

   1x31x2
15
1 23 

C. THREE IMPORTANT FORMS:

1.
 
        1n

1n
xfdxxf)x(f

1n
'n 







n

2.
  

     xflogdx
xf
xf '

3.          xf'xf edxxf.e
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EXAMPLES : Integrate w.r.t.x

1.
 


3 2 1x
x

    

      


 

dx.xf.xfForm

dx.dxdxxx

'n

21
2
11 312312

  

    322
322

1
3
1

2

1x.
4
3

32
1x

2
1

131
1x

2
1












2.
 
  




dx.
cbx

xadx.
bx
ax

n

1n

n

1n

=  
 

 



dx.
cbx

x.bn
bn
a

n

1n

  
 

 cbxlog
bn
a

dx.
xf
xfForm

n

'













3.    dxe.x 4x22 3

=  
 
  dx.e.x6

6
1 4x22 3

       dxexfForm xf.'

=  
 

4x2 3

e.
6
1 

D. INTEGRATION BY PARTS

Integral of the product of two functions
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= first function x integral of the second - Integral of (the derivative of first x
Integral of second)

Example :    dx.e.x x2

=     dxe.x2dxex xx2

Taking x2 as the first function

=    dxe.x2e.x xx2

Taking x as the first function

=      dxedxe.x2e.x xxx2

=   xxx2 e2xe2e.x 

=     x2 e.2x2x 

Self-Assessment - I

1. Solve the following :

a) (x2 - 2x + 3) dx

b) x . logx dx

c) 2 3 2
x dx

x x- +2

8.4 THE DEFINITE INTEGRALS

The area under a graph of a continuous function from a to b (a<b) can be expressed
more succinctly as the definite integral of f(x) over the integral  a to b. Mathematically.

 
1x)x( 


 f

h
limdxf(x)b

a

b

a

Here the left hand side is read, "the integral from a to be of f of x dx". Here a is
called the lower limit of integration and b the upper limit of integration. Unlike the
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indefinite integral which is a set of functions containing all the antiderivatives of f(x)
as explained before, the definite integral is a real number which can be evaluated
by using the fundamental theorem of calcus.  This theorem staes that the numerical
value of the definite integral of continuous function f(x) over the interval from a to b
is given by the indefinite integral F(x) + c evaluated at the upper limit of integration
b, minus the same indefinite integral F(x) + c evaluated at the lower limit of integration
a. Since c is common to both, the constant of integration is eliminated in subtraction
expressed mathematically

  
b

a

b

a
F(a)-F(b)Fdxf(x) )x(b

a

b

a

Where the symbol b

a  indicates that b and a are to be substituted indicates b and a
are to be substituted successively for x.

Example: the definite integral 4

1  dxx10  are evaluated as follows

  

  

75
580

5165

1545510 221
4

24

1






x

)(xdxx

2. The definite integral   dx)xx( 
3

1

3 64

Evaluated

 

    
   
   

1044108
312781

131333

364
2424

3

1

3
1

243







..

xxdxxx

Properties of definite integrals

(i) Reversing the order of the limits changes the sign of the definite integral

 dx)x(fdx)x(f
a

b

b

a  
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(ii) If the upper limit of integration equals the lower limit of integration the value
of the definite integral is zero.

 
a

a
 = F(a) - F(a) = 0

(iii)  The definite integral can be expressed as the sum of component sub integrals.

 

cba

dx)x(fdx)x(fdx)x(f
c

b

b

a

c

a



 a a b

(iv) The sum or difference of two definite integrals with identical limits of integration
is equal to the definite integral of the sum or difference of the two functions.

     
b

a

b

a

b

a
dx)x()x(fdx)x(dx)x(f 99

a a a

(v) The definite integral of the constant times a function is equal to the constant
times the definite integral of the function.

  
n b

dx)x(fkdx)ex(K
0 00 0

Numerical examples based on properties of definite integrals.

Example : Show that

 
4

-4

0

-4

4

0

4

-4

        
        

 

384
320704

1925121925129
6432562642562

43424342

32
4434

4
4

34









 xx
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        
   

RHS

xxxx

xxxxxx

dx)xx(dx)xx(.S.H.R

















 

384
704320

192512192512
43424342

3232

3
9

4
8

3
9

4
8

3
9

4
8

9898

3434

4
0

340
4

34

4
0

34
0

4

34
0

4

34

4

0

234

4

23

Example : Integrate the following definite integral by means of the substitution method
 
 

3

0 2 1
6 dx

x
x

Solution : Let U =  

 

substitivex/ddx

andx
dx
d,x

24

2412





substitutive

 
  


duu.xdx

u
xdx

x
x 1

2 3
2
6

1
6

Integrating with respect to u

   uInduu 33 1

Substitutive 4 = x2 +1

 

 103133

13
1

6

22

3

0
2

2

InIn

xIndx
x

x






90786103
013103

.in
IIncesin,InIn


 since

Example :  Suppose we are asked to find the integral of the MC function.
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MC = a + bQ

Where a and b > 0, over the Q = m to Q =n where m and n are constants, m being
the smaller. This is written in the form.

 
    






nQ

mQ

n
m dQbQaordQbQa

Q = m the lower limit and

Q = n the upper limit.

The indefinite form of the integral is first of all calculated and bracketed and the
limits are written outside the bracket. The bracket is then evaluated when Q= m,
the lower limit, and this value is subtracted from the value of the bracket when Q=
n, e.g.

 
 

 
   
   22

22

m
n

2

n

m

m

n

2

mnb5.0mna
bm5.0ambn5.0an

bQ5.0aQ

2
Q.baQdQbQa











 
m

n

The constant of integration need not be included when dealing with definite integrals.

This result gives us a measure of total variable costs when output increases from m
to n. The definite integral is thus an area under a given curve since the area under
the marginal cost equals total variable cost.

Self-Assessment - II

1. Evaluate

a)  e3x + 2 dx

b)  2x 3-x dx
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8.5 ECONOMIC APPLICATION OF THE INTEGRAL:

1. MARGINAL AND TOTAL COSTS :-

MC = d (TC)/dQ

Thus TC =   
 
  MC dQ + k

Hence if the MC function of a firm is MC = a + bQ

  
22Qb5.0aQ

bQaTC



 

2. THE MPC AND THE CONSUMPTION FUNCTION

Given that the marginal propensity to consume is 0.8, i.e,

dc  dy  = 0.8

the consumption function will take the form

    ky8.0dy8.0dyMPCC

The constant of integration k gives the level of consumption when income is zero.

3. MARGINAL AND TOTAL REVENUE

MR = d(TR)/dQ

Thus TR =    dQMR

If a firm's MR function is

MR = a - bQ.

Where a and b are positive constants, then

TR =      kbQ5.0aQdQbQa 2

k will equal zero because TR is zero when   is zero

4. MEASURING CHANGES IN CAPITAL STOCK

Net investment I is the rate of change in capital stock i.e. dk/dt = I.  If  net investment
is a function of time, it is possible to calculate the changes in capital stock over
some period of time by finding the definite integral of I with respect to time.
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If I =
 

  














*t

0

1
1
0

1
0 1

atdtatdtI

=  
    

1
*t0

1
*t 11







 

This is also area under the investment curve from t = 0 to t = t*.

5. CONSUMER'S SURPLUS

A demand relation gives the price at which any given quantity could be sold. However,
in a competitive market the price does not reflect

Fig. 8.1

what  consumers would be willing to pay for each unit of the good rather
than go without. In fact the price reflect the valuation they place on the last
unit they buy.

The demand curve and Consumer's Surplus

The figure 8.1 shows a demand function EF, with price on the vertical and quantity
demanded on the horizontal axis. At price WC, quantity demanded is WA. WABC
is the amount paid by consumers. However the benefit by consumers is the total
area under the demand function over the range WA, i.e.

WABE = benefit derived by consumer
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Thus

Consumer's Surplus = WABE - WABC = CBE. Assuming the demand function
is P=a - bQ, where d and b are positive constants, then

WABE =      dQbQa*q
0

where q* = WA

    
     
 

   
 

 2
2.2

2

2

*q
0

2*q
0

*qb5.0
bq*aq*qb5.0*aqSurpluss'Consumer

*qb*aq*q*bqaWABC
thus*,bqaP,BatBut

*PqQ.PWABE
2*qb5.0*aqWABE.e.i

0b5.00a*qb5.0*aq

bQ5.0aQdQbQa



















q*

0

6. PRODUCERS SURPLUS

In figure 8.2 producers will supply quantity WA at WC price. At this price producer's
surplus is the area of the rectangle WABC minus the area under the supply curve
DE over the range WA.

Producer's Surplus = WABC - WABD = DBC

Fig. 8.2
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The supply curve and producer's surplus
The supply curve is P = (a+2Q)2 and WA = q*. So that

   
 
    k

6
Q2adQQ2a

3
2 




Thus

WABD     =  
 

   
 







 


*q

0

3
2*q

0 6
Q2adQQ2a

=  
  

6
a

6
*q2a 33



WABC  =  P.Q  =  P.q* = (a+2q*)2q*

Producer's Surplus =  
 

   
6
a

6
*q22*q2a*q

33
2 




 = 
 
 

6
a

6
a*q4*q2a

3
2 






 



The integral of (a-2Q)2 with respect to Q  is
  

 
  k6

6
Q2ak

23
Q2a 3







 

Applications of Integration in Economics

1. The marginal cost function of a product is given by  
 

2q0009.0q01.010
dq
d




Find the total cost function and the average cost function, given that total
cost = 105 when q =10.

Sol : Given d /dq=10 -0.01q+0.0009q2

Integrating, both sides w.r.tq, we have

 

     

2.5k
k3.5.100105

k100003.10005.1010105

105,10qwhen
kq.0003.q005.log

k
3
q.0009.

2
q01.0q10

32

32

32










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Hence total cost function

 32 q003.q005.q102.5 

and average cost function is

 
2q0003.q005.10

q
2.5

q




2. If the marginal revenue function for output q is given by Rm = 
 

  ,5
2q

6
2 

find the total revenue function by integration. Also deduce the demand function.

Sol. We know that the total revenue function is given by

R =    dqRMq
0

The arbitrary constant k in this case is zero as the total revenue is
zero at q = 0.

Now  
 

  4
2q

6RM 3 


    

 

 

 
 




















































 



q5
2q

16

q5
2q

16

q5
1
2q

dq5dq
2q

6

dq5
2q

6R

q

0

2

0

q

0
0q

1

q
02

q
0

q
0

Now, since R= pxq
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  5
2qq

6
q
3

q

q5
2q

63

q
Rp












 

  5
2qq

66q3 



     5
2q

3p 




Is the required demand function.

3. If the demand function is PD = 10-Q-Q2

and the supply function is Ps = Q + 2

Calculate the consumer's surplus at the equilibrium price.

Sol. We have    PD = 10 - Q - Q2   Demand function

and      Ps = Q +2    Supply function

At equilibrium

 

  
4or2Q

04Q2Q
08Q2Q

Thus2QQQ10
PP

2

2

sD










Q cannot take a negative value, thus Q = 2

Consumer's Surplus

Area under demand curve =      dQQQ10 22
0
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=  
 2

0

32

3
Q

2
QQ10 

=  
 

3
115

3
8220 

P.Q = 8, then consumers surplus

 
 

3
178

3
115 

8.6 SUMMARY

We conclude this lesson, by summarizing what we have carried in it. Standard
form integrals integral of a constant, sum, multiple, integrals by partial fraction,
substitution parts definite integrals and the economic application of integrals.

8.7 LESSON END EXERCISE

Evaluate

1.   dxe.x x2

2.  dx1x2x 

3.  
 
 dx

xlogx
1

Find the value of

a.  
 
 

dx
1x1x

1

b.  
 
 dx

x
xlog

2

c.    dxe.x
2x

d.    .dxx 25
1
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e.      dxx1log1
0

f.  
 
 

dx
1x

x2
2
1

4. The following are estimate of MR and MC functions

(1) MR = 4 -0.4 Q   Q  is output

(2) MC = 2 + 0.4 Q

Find TR when sales are (a) 4 (b) 9 in case of MR function and total variable of MR
function and total variable costs when output is (a) 4 (b) 10 from MC function.

5. Given the following demand functions

(i) Q = 10 - P

Q = 64P-2

Find the consumer surplus when P = 4 & P = 5

6. The demand function of a monopolist is

3 Q = 60 - 10P

and his AC function is
 

Q2.01
Q
20AC 

If he decides to maximize sales revenue instead of profits, show how this will effect
the consumer's surplus.
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M.A. Economics Lesson No. 9
C.No. 103 Semester - 1st Unit II

COMPARATIVE STATICS AND ALLIED ECONOMICS

STRUCTURE

9.1 Introduction

9.2 Objectives

9.3 Partial Differentiation and Static Macroeconomic Model

9.4 A closed Macroeconomic Model with Government Activity

9.5 An open Macro Model with Government Activity

9.6 Derivation of Slutsky Equation

9.7 IS-LM Analysis

9.8 Summary

9.9 Lesson End Exercise

9.10 Suggested Readings

9.1 INTRODUCTION

Economics models have two type of variables endogenous variables, whose value
s the model is designed to explain, and exogenous variables, whose values are
taken as given from outside the model. The solution values, we obtain for the
endogeneous variables with typically depend on the values of the exogeneous variables,
and central part of the analysis  will often be to show how the solution values of the
endogenous variables change with changes in the exogeneous variables. This is the
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problem of comparative statics equilibrium analysis or comparative statics.

9.2  OBJECTIVES :

In this lesson, we intend to take :-

-  Partial differentiation and static macroeconomic models.

-  A closed Macroeconomic model with government activity.

-  An open Macro Model with government activity.

-  Derivation of Slutsky equation.

-  IS - LM Models

9.3 PARTIAL DIFFERENTIATION AND STATIC MACROECONOMIC
MODELS :-

Taking a closed economic system with no government activity gives

Y = C+I

Where y is national Income, C is consumption and I is investment.

Assume I is autonomous at I* and C is a function of y, i.e C= C* +b y,
where C* is the autonomous consumption and b is the marginal propensity to consume.

Y = C + I

Y = C*+by + I*

(I-b) y = C* + I*

 

bI
I

bI
Icy

**







 

bI
Ifor*c/y *c 



f c* is the rate of change in y with respect to changes in c*; this is the multiplier

  bI/I*fI*I/y 
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Clearly f c* and f I* take a constant value so long as b remains constant. This is a
consequence of the linear relation assumed in the model. In each case the partial
derivative gives the rate of change in national income with respect to a change in
any of the autonomous component party of y, assuming all other autonomous part
of the consumption funct ion increases by   c* then y will increase by   c* / 1-c.
Because it analysis only the effects of the changes in autonomous variables on the
equilibrium positions for the economy, and does not attempt to deal with the process
of transition, this type of analysis is known as comparative statics.

9.4. A CLOSED MACROECONOMIC MODEL WITH GOVERNMENT
ACTIVITY

Closed economic system  with government activity, the identity now becomes

Y = C + I + G

Where G is government expenditure, I and G are assumed to be autonomous
and consumption C is assumed to be a function of disposable income yd, i.e

C = C* + by

Where C* is the autonomous part of consumption and b is the marginal
propensity to consume, yd is national income minus taxes. If

T = T* + t y

Where T* is that part of taxes, which does not depend and income and t is
the tax rate, then

C = C* + b (y-T)

C = C* + b(y-T* - t y)

We know,

y = C*+ b y - b T* - b t y + I + G

= C* + b (I - t) y - b T* + I + G

[ I-b (I-t)] y = C* - b T* + I +G
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)tI(bI
G

)tI(bI
I

)tI(bI
Tb

)tI(bI
Cy

**













fT*  = - 
 

)tI(bI
b
 , i.e. the rate of change in income with respect to changes

in T* is constant. Consequently if T* increases by   T*, the national income y will
decrease by

 

)tI(bI
bT *




fG gives the rate of change in y with respect to G. If G increases by   G then
national income Y will increase by

 
 

)tI(bI
bGfG G 



If    G =   T* i.e. an increase in expenditure is financed by an equal increase in

the autonomous part of taxation, then the overall change in national income will
equal

 
G

)tI(bI
I

)tI(bI
bT* 







 

)tI(bI
)bI(G





 

btbI
)bI(Gy






 
I

btbI
)bI(but 




Since the denominator is greater than the numerator. Consequently the change in
income  y is less than the change in government expenditure  G, i.e.

 
ObutI

G
y





9.5 AN OPEN MACRO MODEL WITH GOVERNMENT ACTIVITY:

If the foreign sector is included in the above model the identity becomes
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y = C + I +G + X- M

Where x is exports and M imports. If exports are constant, but imports M
are a function of yd i.e.

M = M* + m yd

Where M* is the autonomous part and m is the marginal propensity to import

M = M* + m (y-T)

We know T = T*+ t y

M  = M* + m( y-T*- t y)

 = M* + m y -mt y - T*

 = M* + m(I-t) y - m T*

y = C* + b(I-t) y-b t* + I + G + X- M* -m (I-t)4+m T*

[I-b(I-t) + m (I-t)] y = C* - (b-m) T* G + I + X - M*

Thus, y =
 

)tI(m)tI(bI
MxIGT)mb(Cy

***




 X

We have I-b (I-t)+m (I-t) = I-(I-t) (b-m)

 y   =  
X 

)mC()tI(I
MxIGT)mb(Cy

***






So fT* is constant, and

FT* =  
 

)mb()tI(I
)mb(




fC* = fG = ft = fx = -fM* =  
 

)mb()tI(I
I



So  that  fc* is  also constant, if the autonomous part of imports M* increases by
  M*, assuming all other components of y remain constant, national income will
decrease by
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)mb()tI(I
IM*




If the autonomous part of the tax function T* increases by   T*, national income
will decrease by

 
 

)mb()tI(I
mbT *






9.6 DERIVATION OF SLUTSKY EQUATION

Comparative statics analysis examines the effect of perturbations analysis
examines the effect of perturbations on the solution variables (such as price and
incomes) on the solution values for the endogenous variables (namely, quantities)
changes in prices and income will normally alter the consumers expenditure pattern,
but the new quantities (and prices and incomes) will always satisfy the first order
conditions.

U = f (q1, q2) objective function (i)

y = p1 q1 +  p2 q2 constant equation (ii)

where y is total money income, U is total satisfaction, p1 = price of commodity one
p2 is the price of second commodity and q1, q2 are the amount of commodity one
and two, p1 q1 is the amount of expenditure on commodity one and p2 q2 is the
amount of expenditure commodity two. Here p1, p2 and y are exogenous.

Variables and q1, q2 are endogenous variables from the objective function and the
constraints we form a function.

V = f (q1, q2) +    (y-p1 q1 - p2 q2)

Which satisfy the following conditions for maximizing the total utility function.

 0pfq/v 111 

 0pfq/v 222  ………  (3)

 0qpqpy/v 2211 
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Now, in order to find the magnitude of the effect of price and income changes on
the consumers purchases, we allow all variables to vary simultaneously. This can
be done by total differentiation of the equation(3)

 
11212111 dpdpdqfdqf 

 
22222121 dpdpdqfdqf  ………… (4)

-p1dq1 - p2 d q2 = -dy +q1dp1+q2dp2

In order to solve this system of three equations for the three unknown (dq1,dq2d ),
we take the help of Crammers rule. In matrix notation, we may write (4) as under

 

)5.........(
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)6(......
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DDD
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332313

322212

312111

2

1








































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
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

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








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



opp
pff
pff

Dwhere

21

22221

11212

and D11, D12… are the co-factors of matrix [D]. By inter changing the rows and
columns of the co-factor matrix, we get Adj. matrix and if we divide it by the original
matrix [D] then we get the inverse of the original matrix.

Therefore,

 

 D
]dpqdpqyd[DdpDdpDdq 221131221111

1


    ……..  (7)

 

 D
]dpqdpqyd[DdpDdpDdq 221122222111

2


   ……..  (8)

Dividing both the sides of (7) by dp1 and assuming that P2 and Y do not change [or
dy = dp2 =0], we have
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   D
Dq

D
D

op
q 31

I
11

I

i 





……... (9)

(Price effect)

The partial derivatives on the left hand side of equation (q) is the rate of change of
the consumers purchase of dI with respect to change in pI, all other things being
equal. Ceteris paribus, the rate of change with respect to income is

 

 D
D

y
q 31i 





………..        (10)

(Income effect)

Consider a price change that is compensate by an income change that leaves the
consumer on his initial difference curve. An increase in the price of a commodity is,
accompanied by a corresponding in his income, such that dij = 0

dy = q1 dp1 + q2 dp2

-dy + q1 dp1 + q2 dp2 =0

Hence from equation 7, we have the substitution effect

 
 D

D)
p
q( 11

constnatu
I

I 





u=constant

Now, the equation (q) of slutsky equation can be written in terms of substitution
effect and income effect as:

 

effectincome
effect

onsubstituti
effecticePr

constnatp
Y
qq

p
q)

p
q( 1

Iconstnatu
1

1

I

I 
























u=constant constant

9.7   IS-LM ANALYSIS

IS -LM analysis studies the equilibrium values of national income y and the interest
rate r, in terms of certain policy, parameters and behavioral parameters. 'IS' stands
for 'Investment Savings' and 'LM' for 'Liquidity money'.
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First, consider equilibrium in the 'goods sector'. This can be represented by
the equation

Y = C + I + G ……… (1)

Which simply says that national income y is equal to the national expenditure.
Expenditure can be split into consumption c, investment I, and governments spending
G, the last being considered, as a policy parameter. Behavioral parameters enter
when we consider how consumption is related to the national income, and how
investment is affected by the interest rate. It is usual to assume that both relationships
are linear, that is.

C = CO+ bY ……….. (2)

I = Io- a r  ……….. (3)

(a, b, co, Io positive constants)

Thus the equilibrium condition becomes

Y = (CO+ bY) + (Io- a r) + G

Y - b Y + a r = Co + Io + G

(I-b) Y + a r = Co + Io + G ……….. (4)

Equilibrium in the money sector is represented by the statement that the supply of
money is equal to the demand for money. Ms = Md. the money supply Ms is assumed
to be given; it is another policy parameter. The money demand Md is assumed to
depend on y and r, and again we assume a linear relationship.

Md = MO + fY - g r ……….. (5)

(f, I,  Mo positive constant)

Thus, the equilibrium condition becomes

Ms = MO + fY - g r

fY - g r = Ms - Mo ………… (6)
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The two equilibrium conditions can be written as a system of two linear equation in
the unknown Y and r

f Y - g r = Ms - Mo ………… (6)

(I-b) Y + a r = Co + Io + G ………... (4)

In matrix terms this system is

 

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
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and the solution is
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
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



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
GgC

MM
fbI
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)bI(gaf
I

oo

os
………… (8)

Thus, we have explicit formula for the equilibrium values  y and r

 
)bI(gfa

)Ggc(g)MM(a*y ooos




 I

 
)bI(gfa

)Ggc(f)MM()bI(*r ooos




 I

These expression enable us to answer questions about what happens when the
policy parameters or the behavioural parameters change.

Example: Suppose that the government decides to allow an increase in the money
supply Ms. What will be the effect on the equilibrium value of the national income?

From the formula for y*, we find

 
 

)bI(gf
a

M
*y

as 





Thus an increase in money supply will result in an increase in y* if
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)bI(gaf
a


is positive. The behavioural parameters a, b, f &g are assumed to be positive, this
condition will certainly be satisfied if I-b>o that is b<I.

In fact, this condition will certainly hold in any realistic model. We have  y = C+I+G,
so C<Y and C= Co+ bY so bY<c , Hence bY < Y or b < I.

Note : Partial Differentiation and static macroeconomic models, IS-LM Analysis
totally dependent on Anthony Martin & Norman Biggs; Mathematics for economics
and finance-Methods and Modeling

Black, J & J.F. Bradley : Essential Mathematics for Economists (John Willey &
Sons) Slutsky Equation, Heavily Depended on H.S. Aggarwal Book - A Mathematical
Approach to Economic Theory]

9.8 SUMMARY

This chapter gives idea about the comparative statics and the allied economics
by explaining the sections - 9.3, 9.4, 9.5, 9.6 and 9.7.

9.9 LESSON END EXERCISE

Q1. Explain IS-LM Model Mathematically

Q2. Examine Static Macro-Economic Modes with the help of Partial Differentiation.

Q3. Derive the Slutsky Equation.

9.10 SUGGESTED READINGS

Aggarwal, C.S. & R.C.Joshi : Mathematics for Students of Economics (New
Academic Publishing Co.).

Allen, R.G. D. : Mathematical Analysis for Economists (Macmillan).

Anthony Martin & Norman Biggs : Mathematics for Economics and Finance-Methods
and Modeling.
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Black, J & J.F. Bradley : Essential Mathematics for Economists (John Willey &
Sons).

Dowling, Edward T : Introduction to Mathematical Economics (Tata McGraw).

Henderson, James M & Richard E Quandt : Microeconomic Theory- A Mathematical
Approach (McGraw-Hill International Book Company).

Kandoi B : Mathematics for Business and Economics with Applications (Himalaya
Publishing House).

Yamane Taro : Mathematics for Economics - A Elementary Survey (Prentice Hall
of India Pvt. Ltd.).

*******
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M.A. Economics Lesson No. 10
C.No. 103 Semester - 1st Unit II

COBB-DOUGLAS AND CES PRODUCTION FUNCTION

STRUCTURE

10.1 Introduction

10.2 Objectives

10.3 The general form of the Cobb-Douglas Production Function

10.3.1 Properties of CDPF

10.4 The CES Production Function

10.4.1 Properties of C.F.S.P.F.

10.4.2 Advantages of CESPF over CDPF and Limitations

10.5 Summary

10.6 Lesson End Exercise

10.7 Suggested Readings

10.1 INTRODUCTION

Economists have developed a number of production functions. Their production
functions are based on the empirical analysis of industry and agriculture in a given
economy or a region. It is difficult to study all such production functions here and
nor they are relevant for us. In the following analysis we discuss only the important
production functions, namely (i) the Cobb-Douglas Production Function and (ii)
the Constant Elasticity of Substitution Production Function or simply the C.E.S.
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Production Function.

10.2 OBJECTIVES

In this lesson we shall examine Cobb-Douglas production function alongwith its
properties and also examines CES production function alongwith its limitation and
properties.

10.3 THE GENERAL FORM OF THE COBB-DOUGLAS PRODUCTION
FUNCTION

X = b0 .L
b1.Kb2.u --------------- (1)

Where x = output L = Labour input, K = capital input, u = random disturbance
term, b0 = a constant (may be treated as efficiency parameter, b1 & b2 positive
parameters. Also L>0, K>0, b1>0, b2=0.

The sum of exponents (b1+b2) represent the degree of homogeneity (or returns
to scale). In this production function the output (x) is a function of two inputs L and
K or symbolically.

x = f(K,L) such that

f ( L,  K) = ( L)b
1 ( K)b

2

=  b1+ b2 L
b1 Kb2

=   b1 + b2 x.

Thus, if b1+b2 = 1, the firm would be operating under the constant returns to scale
and the production function is homogenous of degree one.

If  b1 + b2 >1, it will have diminishing returns to scale.

If  b1 + b2 >1, it will have increasing returns to scale.

Although the Cobb-Douglas production function is equation (i) is non-linear, it can
be transformed into a linear function by converting all variable into logarithm. It is
why, this function is known as a log linear function. Thus, taking the log of equation
(i) on both sides, we have
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log x = log b0+b1 log L + b2 log K + logu     --------------(2)

10.3.1 Properties of Cobb-Douglas Production Function

(i) Constant returns to scale prevails in the economy. The Cobb-Douglas
production function assumes that b1+b2 = 1, which means constant return to scale
prevails in the economy. In other words, it proves the validity of Euler's theorem.
Euler's theorem states that if the factors of production are paid according to their
marginal product then total product will just exhaust. In other words, if factors are
rewarded according to their marginal products, the combined share of the factors
is equal to total output (x).

Since this condition is satisfied by production functions of degree one ; the
Cobb-Douglas production function which was used to attempt an empirical verification
of the marginal productivity. Theory of distribution of the marginal productivity theorem
of distribution, statisfies Eulers theorem.

We have,

Log x = Log b0 + b1LogL + b2LogK + LogU
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x.

k
bMP 2

K 

 
XbK.X.

K
bKMPTP 2

2
.KK 

 x)bb(xbxbTP 2121KL 

If (b1+b2) = 1, then TPL + K = x

(b1+b2) is the degree of homogeneity of the Cobb-Douglas production function.
Suppose that labour and capital increased by 10 percent, then the Cobb-Douglas
function becomes.

 U)K10.1.()L10.1(bx 2b1b
0

    UKL.)10.1(b 2b1b2b1b
0



    UKL.)10.1(b 2b1b2b1b
0



Thus, output would increase by (1.10)b1+b2 and if (b1+b2) < 1 output would
decrease by 10 percent, if (b1+b2) > 1, output would increase by 10 percent and if
b1+b2 = 1, output would increase exactly by 10 percent. In Cobb-Douglas production
function returns to scale are, therefore.

characterized by the following.

b1 + b2<1 = Diseconomies of scale

b1 + b2 = 1 Constant returns to scale

b1+b2 >1 = Economies of scale

2) Elasticity of substitution is equal to one : The elasticity of substitution of the
Cobb-Douglas production function is equal to unity everywhere and this is only
function which satisfies this property if the production function is linear and homogenous
then the elasticity of substitution   = 1, everywhere if and only if the function is

X = b0. L
b1. Kb2U where b1+b2 = 1

or b2 = 1 - b1
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Proof : We know that the elasticity of substitution can be defined as

     
 % change in factor quantity ratio
 % change in factor price ratio

 =

Since the rate of technical substitution between two factors is defined by (RTS)

=  
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Then, elasticity of substitution between two factors is defined by
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Where K/L = factor quantity ratio and R=factor price ratio 
P
P

K

L

, Now we have
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From the function we take the partial derivatives of x with respect to L and K
respectively as :

x = b0. L
b1. Kb2 U
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3) Expansion path generated by the Cobb-Douglas production function is
linear and passes through the origin.

Proof : By first order condition for the constrained optimization, we have
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We have found, from the function that
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b2PL.L = b1 PK.K
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b2 PL.L-b1 PK.K = 0

This expression represents the expansion path implicit in the Cobb-Douglas production
function X = b0. L

b1. Kb2.u, which describes a straight line passing through the
origin in the isoquant plane. The above expression can be re-written as.
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L

b
b

K.P
L.P


The left hand side of above equation represents the share of income accruing to
labour relative to that going to capital. Now that relative income shares are equal to
b1/b2 which is determined by the technology that governs the Cobb-Douglas production
function. If b1 is high relative to b2 then the labour share will be high relative to
capital share in income. If technology is constant, if follows that a proportionate
change in factor price produces a compensating proportionate change in relative
factor inputs and, therefore, relative share remain constant.

4)   and   represents the labour share and capital share of the output
respectively.

x = b0.L
b1.Kb2.u

Taking the log on both the sides

Log x = log b0 + b1logL+b2logK+logu
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In perfect competition, we have

VMPL = PL = PX. MPL where PX = price of output

or MPL = PL/PX
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putting the value of MPL in the above equation

We get  
 

incomeTotal
sharewage
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In perfect competition, we have

VMPK = PK = MPK.PX

MPK = PK/PX

Putting the value of MPK is the above equation,

b2 = PK/PX. K/X = Rent Share / Total Income

Hence, b1 = Wage share of total income.

 b2 = rent share of total income.

5) b1 and b2 are also the elasticities of output with respect to labour and capital.

In Cobb-Douglas production function, b1 is defined as the partial elasticity of production
(x) with respect to labour (L), it denotes the percentage change in labour input,
keeping capital input constant. Similarly, b2 is defined as the partial elasticity of
production (x) with respect to capital input (K), keeping labour constant.

Since b1 and b2 represent individually the percentage change in output given percentage
change in labour and capital respectively the two co-efficients taken together measure
the total change in output for a given percentage change in labour and capital.
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The Cobb-Douglas production function takes a linear form, when expressed
in logarithmic.

log x = log b0 + b1 log L+b2 log K+ log U
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   elasticity of output w.r.t. labour

Similarly b2 = eXK elasticity of output w.r.t. capital of the

6) If one input is zero, output will also be zero.

The Cobb-Douglas production function assumes constant return to scale
under which all the inputs are changed in equal proportion are also zero and the
consequent output will also be zero.

Self-Assessment - I

1. Explain the property - I of CDPF.

________________________________________________________

________________________________________________________

________________________________________________________

________________________________________________________

2. Elucidate the property - V of CDPF.

________________________________________________________

________________________________________________________
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________________________________________________________

________________________________________________________

10.4 THE C.E.S. PRODUCTION FUNCTION

A production function, which assumes that the basic measure of the degree of
substitution is called but it not restricted 'a priori' to any value. It is called the
'Constant Elasticity of Substitution (C.E.S.) production function'. Clearly, the Cobb-
Douglas and Leontief's production functions are special cases of the CES relation.

When the elasticity of substitution specified as constant, it only assumes that changes
in relative factor inputs and prices do not alter the elasticity. The value of the elasticity
is determined by the underlying technology ; and changes in the underlying technology
affect variations on the elasticity for every level of factor inputs and prices. Hence,
the constancy of the elasticity refers to its invariance with respect to changes in
relative factor supplies and not to transformations of the underlying technology.

The characteristics of an abstract technology are identified by the C.E.S. production
function. That is to say that it permits us to measure changes in the efficiency of a
technology, changes in the technologically determined returns to scale, changes in
the capital intensity of a technology and changes in the substitution of labour for
capital etc.

The C.E.S. production function was derived independently by two different groups
of economists: one consisting of K.J. Arrow, H.B. Chenery, B.S. Minhas and Solow;
and the other group consist of Murrary Brown and De Cani. The two derivations
are dissimilar; also the latter permits any degree of returns to scale. Murray Brown
and De Cani (1963) used the function in an ambitious attempt to separate the effect
of output change; economics of scale, technical change and changes in the relative
factor prices on labour demand; with U.S. economy data over the period 1890-
1958.

Further, some of the recent studies use the constant elasticity of substitution (C.E.S.)
function with substitution elasticity below unity is claimed to be more suitable for
production functions than the Cobb-Douglas form. Under the Cobb-Douglas
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production function, elasticity of substitution is equal to unity but in C.E.S. production
function, as the name suggests, the elasticity of substitution is constant and not
necessarily equal to unity. Four economists, Arrow, Chenery, Minhas and Solow
have proposed this C.E.S. production function.

The equation of this function is.

 
(1) …]N)K1(KC[X

V

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Where, X = output,

C = capital input,

N = labour input,

 = Coefficient of technical efficiency or scale effect (or simply the efficiency parameter).
This parameter plays the same role in C.E.S. function as the coefficient A in the
Cobb-Douglas function. It serves as an indicator of the general state of technology.
Hence the greater the value of , the larger will be the output, regardless of inputs.

K= Capital intensity factor coefficient. It is also known as the distribution parameter
and is similar to     in the Cobb-Douglas production function. This parameter shows
the relative contribution of capital input (K) and labour input (L), to the total output
(X).

(1-K) = Labour intensity coefficient.

  = It is known as the substitution parameter and is closely related to the constant
elasticity of substitution. The value of es (elasticity of substitution) depends on the
value of this parameter.

 = It represents the degree of homogeneity of the function or the degree of returns
to scale.

Hence, this function consists of three variable (X,C and N) and four parameters
(, K,   and ). The variables are measured in index number terms with a common
base period. And the four important parameters in the function represent the four
different characteristics of an abstract technology. Thus is, in brief, the beauty of
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this particulars production function over the Cobb-Douglas (or other types) production
function.

Relation (1) can be written in any one of the following forms.

i)
 








 




 11;]N)K1(KC[X

ii)  
 








 


 11;]N)K1(KC[X /

iii)  
 



























 11;
C)K1(KN

CNX

iv)  
 








 


  11;]NKCK[X /

21

where    = elasticity of substitution
All the above four forms of the function will give us the same type of result.

10.4.1  Properties of C.E.S. Production Function:

1) The value of the elasticity of substitution depends upon the value of  
We define the elasticity of substitution as
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Where K/L = factor quantity ratio, R = factor price ratio

Now our function is,
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Taking the partial derivatives of X w.r.t. N we get

 
)]K1(N[]N)K1(KC[

N
X 11














 








218
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Now we are again using equation n(2) as
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Putting the value of (4) in equation (3) we get,
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Similarly we can find,

 
)K(CX

C
X 11 











…… (6)



219

Now we can define the marginal rate of substitution as
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Putting the values from equations (5) and (6) we have,
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Taking the log on both the sides,

log R = log K'+(1+  ) log U
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If   = 0 then   =1 and we shall get the situation of Cobb-Douglas production
function. Hence the value of   depends upon the value of  . It assumes whatever
the value of   may be, (depending upon   ) but it is always constant.

2) The marginal products should be positive:

Our function is,   
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[Please see property No.1 for its calculation)

Or
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If there are constant returns to scale then  = 1 (Here  refers to returns to scale
or the degree of homogeneity of the function).

If  
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Similarly, the Marginal Product of Capital is,
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Again, if there are constant returns to scale, then v=1 and

 


 














1

2
11

2 C
Xh

C
Xor.CXh

C
X

Where
 

]1.NopropertySee[
1

1


  )10...(

It is now obvious that the marginal products are positive.

3) The marginal product curves are sloping downward or
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4) The marginal product of each factor will increase for increase in the other
factor inputs.

To satisfy this property, the RTS (or MRS) or labour (N) for capital © can
be derived in terms of C.E.S. production function by taking the ratio of MPL and
MPK as :
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This plays an important role in the following analysis. If the production process
is highly L-intensive (small capital is used per unit of labour), the MPL is high compared
to MPK for each N/C ratio ; thus a unit reduction in the labour rate has to be
compensated for larger increase in the rate of capital than if the process were to be
less L-intensive. In this sense, K is a measure of capital intensity.

If   is high, then capital is easily substitute for labour and vice-versa. The
expression for R tells us that if we reduce the rate capital inputs by one unit, we
have to increase the rate of labour input by more when factors are easily substitutable
for each other then when they are ceteris paribus. Perhaps the easiest way to rationalize
this is to recall that the more easily substitutable are the factors for each other, the
more similar they are forms for each other, the more similar they are form an economic
point of view. If   is low then the factors are dissimilar..

10.4.2 Advantages of C.E.S. Production Function over the Cobb-Douglas
Production Function and Limitations :

Advantages of CES Production Function

1) C.E.S. function represents a production function where all types of returns
may be analyze 1. Since   is not necessarily be equal to one ( 1), it represents
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a more general form of production techniques.

2) As we have seen, the C.E.S. production function takes into consideration a
number of important parameters. It, therefore, covers a wide range of variety,
substitutability, and efficiency.

3) Estimation of this C.E.S. function is very easy. Of course, some transformation
is needed, if we write output per unit of labour as a function of capital per unit
of labour, that is,
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then this production function becomes very easy.

4) It removes all the difficulties of Cobb-Douglas production function and free
from the unrealistic assumptions of the Cobb-Douglas production function.

Limitations of the C.E.S. Production Functon :

1) The C.E.S. production function combines in one parameter,  , two forces
that affect it. In the first place, economies of scale can result from an expansion
in the scale of operation for a given technology. Alternatively, given the scale
of operation, a technological change can alter the rate of output. In empirical
application both forces may affect the homogenity parameters,  , and it may
not be possible to distinguish between them.

2) Prof. H. Uzawa has attempt this function and concludes that it is difficult to
generalize it to n-factors of production.

3) A limitation of the C.E.S. production function is associated with its principal
virtue - the specification of elasticity of substitution which is invariant to changes
in factor proportions. Recall that we have allowed the elasticity of substitution
( ) to changes in response to changes in factor proportions. But this is an 'a
priori specification': we really do not know whether the elasticity of substitution
( ) should vary when factor proportions change. It is true structure prescribes
a variable elasticity due to changes in factor proportions and we claim that
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elasticity in changing for technological reasons then we are ascribing to
technological change more than is due to it. Unless a completely general function
is specified - a polynomial of degree n-it seems this difficulty must be accepted.
Since it is impossible with the available data and statistical techniques to obtain
estimates of completely general production and since they do not necessarily
satisfy all neo-classical criteria (properties of C.E.S. function), we are forces
for the immediate future to utilize the C.E.S. production function and live with
the potential specification error.

4) A fourth difficulty to this C.E.S. function is that K, the capital intensity parameter
is not dimensionless.

Beside from there theoretical difficulties, there is an empirical problem; the
C.E.S. production function is relatively difficult to fit to data.

[Note: Both the Cobb-Douglas and CES production function heavily depended on
H.S. Agarwal book - A Mathematical approach to Economic Theory]

Self-Assessment - II

1. Explain the advantages and disadventages of C.E.S.P.F.

________________________________________________________

________________________________________________________

________________________________________________________

________________________________________________________

2. Narrate the first property of C.E.S.P.F.

________________________________________________________

________________________________________________________

________________________________________________________

________________________________________________________

10.5 SUMMARY

This chapter deals with the non-Linear Production Functions and narrate
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their importance to the reader.

10.6 LESSON END EXERCISE

Q1. Explain the Cobb-Douglas production function and its properties.

Q2. Elasticity of substitution is equal to one in case of Cobb-Douglas production
function.

Q3. Examine C.E.S production function and its properties.
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